[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
69(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:29 ID:cTg/FCp5(66/94) AAS
>>67
「ぷふ」さん、どうも。スレ主です。
全面同意。同じことを、通俗的なたとえ話で、>>63に書いた(^^
70(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:31 ID:cTg/FCp5(67/94) AAS
>>68
分からない問題はここに書いてね436
2chスレ:math へ
71: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:35 ID:cTg/FCp5(68/94) AAS
>>62
哀れな素人さん、どうも。スレ主です。
>>ギャハハハハハハ!!!
>>さすが数学を知らない工学馬鹿、正真正銘のidiotだな
>
>↑これはアホ豚の一石である(笑
情報ありがとうございます(^^
これからもよろしく
まあ、ピエロは常人と違うサイコパス
彼はすぐ、我を忘れて本性を現すんだな (^^
72(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:42 ID:cTg/FCp5(69/94) AAS
>>70 自己レス
これ良いな(^^
これからは、つまらん出題は、「分からない問題はここに書いてね」に投げよう!!(^^
73: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:55 ID:cTg/FCp5(70/94) AAS
>>67
横レスで悪いが
この>>67が分らないようじゃ、時枝記事を論じる資格なしだな〜(^^
74(9): 2017/11/12(日)10:30 ID:8hZGWxI0(1/2) AAS
>>67
外部リンク:xorshammer.com
ぷ君は英語はできるよな?まずはきちんと読み返してきてくれ。
> fを選ぶ(関数空間の中から)
> x0を選ぶ(選び方はどうでもいいよ)
これは『fとx0は任意に与えられたものとする』ということでよろしいな?
これが意味することは、fとx0は確率変数ではない、ということである。
明らかにx0∈[0, 1]を一様分布で選ぶとする 元 問 題 と は 異 な る のである。
> In Step 2, choose x with uniform probability from [0,1]
ぷ君が 問 題 を 改 変 しているのは明らかである。
> fを選ぶ(関数空間の中から)
> x0を選ぶ(選び方はどうでもいいよ)
> x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)
ぷ君の言うf(x0)は確率変数ではない。
ぷ君の独自設定では、f も x0 も 確 率 変 数 で は な い からである。
ぷ君は『自分が分からないもの=確率変数』だと思っているだろ?
違 い ま す 。
fもx0も事前に与えられて(固定されて)いるのでf(x0)は確定している。
ぷ君に知らされていないだけで、f(x0)は確定しているのである。
f(x0)はRの元のどれか、1か2かπか別のどれか、とにかくある1つのRの元である。
fもx0も確率変数でない以上、f(x0)は確率変数ではない。
もしこの簡単な理屈が分からなければ 分かりません と言え。
さらに言えばオマエの独自設定では確率も糞もない。
なぜなら確率空間が設定されていないからであるw
ぷ君がきちんと理解したか、確認問題を出させてもらう:
[確認問題]
前スレのぷ君の『x=0戦略』を考える。
全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
すなわちこの問題ではxは確率変数とみなせる。
fもgも任意であり、事前に与えられているとする。
このときf(0)=g(0)となる確率は?
※この問題で回答を間違えたらもう後はないw
(ぷ君以外は黙っていてくださいね)
75(4): 2017/11/12(日)10:37 ID:tybpW7Vy(2/7) AAS
>>70
ん?私は当然答えを知っているが?
>>72
>つまらん出題
もしかして、答えが分からないのかな?
ということで
>>1への問題(大学1年程度)
Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
76: 2017/11/12(日)10:43 ID:tybpW7Vy(3/7) AAS
>>75
>>1へのヒント
無理数上での値は定数、としてよい
77(1): 2017/11/12(日)10:53 ID:tybpW7Vy(4/7) AAS
>>75
Q1、Q2は検索すれば見つかる
Q3は、とある有名なテクストに載っている
ま、どうせ考えても思いつかないんだから、
必死でサーチするんだね
78(4): 2017/11/12(日)10:55 ID:8hZGWxI0(2/2) AAS
>>74
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
{1}と書いてしまったが、{0}とする。この標本をx0とする。
(x0(1)=0なる可測関数を考えてもよいが回りくどいので訂正しておく)
79(1): 2017/11/12(日)16:15 ID:YCWXE/2C(1/5) AAS
スレ主もぷも自説は雄弁に述べるが問題を出されると弱いなw
80(1): 2017/11/12(日)16:24 ID:tybpW7Vy(5/7) AAS
>>79
だね。
>>1への問題(大学1年程度)
Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>>1は軽率だから、てっきり
「有理数で不連続、無理数で連続? そんなことあるわけねぇ!」
と吠えるかとおもったがw
81(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:33 ID:cTg/FCp5(71/94) AAS
>>80
分からない問題はここに書いてね436
2chスレ:math 問題
2chスレ:math A1
2chスレ:math A2
82(1): 2017/11/12(日)16:38 ID:tybpW7Vy(6/7) AAS
>>81
これ大学数学の常識なんだけどな
83(6): 2017/11/12(日)16:44 ID:tybpW7Vy(7/7) AAS
Q1. [0,1]上至るところで不連続な関数を1つ示せ
A1. ディリクレの関数
有理数で1 無理数で0
外部リンク:ja.wikipedia.org
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
A2. トマエの関数
有理数rが既約分数p/qで表されるとき、1/q 無理数で0
外部リンク:ja.wikipedia.org
で、Q3の答えはまだ見つからないのかい?(ニヤリ)
84(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:48 ID:cTg/FCp5(72/94) AAS
>>63 関連
ピエロくん、これだれの発言かな?(^^
この発言正しいよ。
”何回も試行する場合に変化するのはfではなくx”
つまり、xは変化しても、fは変化しないし、代表f’も変化しない!(^^
サイコパスは、忘れているかな?(^^
45 2chスレ:math
(抜粋)
738 名前:132人目の素数さん[sage] 投稿日:2017/11/11(土) 07:52:57.35 ID:9+uC0Qtj [6/26]
>>716
>必要なのはある値(この場合x=0)におけるf(0)を予想するということ
x=0だと固定したがるのが馬鹿丸出し
「必要なのはある値xにおけるf(x)を予想するということ」
でいい。
何回も試行する場合に変化するのはfではなくx
(引用終り)
85: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:50 ID:cTg/FCp5(73/94) AAS
>>83
しらんな
「分からない問題はここに書いてね」を、まてば〜(^^
86: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:51 ID:cTg/FCp5(74/94) AAS
>>82
なるほど、必死の話題逸らしか(^^
87(8): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:04 ID:cTg/FCp5(75/94) AAS
>>61 補足
>簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
>x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当りのとき)は値0、となる関数Δ’fを考える
2)関数Δ’fを、ルベーグの意味で、xについて区間[ 0,1 ]で積分する
3)不一致が、上記区間内の測度0ゆえ、積分値は1
4)このことを、通俗的に書いたものが>>63であるにすぎない(落ちこぼれは英語が読めないらしい(^^ )
補足終り
以上
88: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:07 ID:cTg/FCp5(76/94) AAS
>>84 訂正
45 2chスレ:math
↓
45 2chスレ:math
89(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:09 ID:cTg/FCp5(77/94) AAS
>>87 訂正
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当りのとき)は値0、となる関数Δ’fを考える
↓
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当らないとき)は値0、となる関数Δ’fを考える
90: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:09 ID:cTg/FCp5(78/94) AAS
不致→不一致か(^^
91(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:29 ID:cTg/FCp5(79/94) AAS
>>83
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>これ大学数学の常識なんだけどな
おっちゃん、出番だよ〜(^^
92(1): 2017/11/12(日)17:40 ID:hePUuc7P(1/13) AAS
>>87
> 4)このことを、通俗的に書いたものが>>63であるにすぎない
通俗的ですか。そういう言い訳は聞いたこともないくらい苦しく痛々しい。
>>63
> 1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
> 2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
f(x)が分かってから、ではありませんけど?
外部リンク:xorshammer.com
をよく読みましょうよ。
> Using the axiom of choice, pick a representative from each equivalence class.
これと
> Bob reveals {(x_0, f(x_0)) | x_0 ≠ x}
これ。どちらが先ですかねー?よく読んで答えましょうねー。
> 4.つまりは、数学的には、Bobのf(x)をカンニングして代表f’(x)を作っているってことだ
> 5.だったら、当たるのは当たり前でしょ(^^
結論出す前に問題を理解するほうが先ですねー。
93(2): 2017/11/12(日)17:48 ID:bcdob+HV(1/4) AAS
>>69
どうもここにはあなたしか確率のことを理解できてる人はいないみたい
94(4): 2017/11/12(日)17:53 ID:bcdob+HV(2/4) AAS
>>74
全く意味がないことばかり書くのね
別にx0が毎回変わってもいいよ
f(x0)以外が開示されているということが重要
x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
95(5): 2017/11/12(日)17:57 ID:hePUuc7P(2/13) AAS
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74 >>78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
96: 2017/11/12(日)18:00 ID:YCWXE/2C(2/5) AAS
スレ主自演下手過ぎw
97: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)18:08 ID:cTg/FCp5(80/94) AAS
>>93
>どうもここにはあなたしか確率のことを理解できてる人はいないみたい
「ぷふ」さん、どうも。スレ主です。
いや、私もそんなに確率論は詳しくないが
ともかく、落ちこぼれ素人衆には、困ったものです(^^
98(1): 2017/11/12(日)18:16 ID:YCWXE/2C(3/5) AAS
自分で自分を褒め讃えて楽しい?
上下前次1-新書関写板覧索設栞歴
あと 594 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.022s