[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
55
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:07 ID:cTg/FCp5(55/94) AAS
>>53 つづき

スレ45 2chスレ:math

544 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:40:22.74 ID:/DwZQaZ/ [5/5]
>>543 追記

そうそう、書き忘れたが、
時枝で、100列作るでしょ(>>19より)

その各列に、>>541で書いたように、
XOR’S HAMMERの任意関数の数当て解法を適用すれば

任意の100個の箱の数が、確率1で当たります(^^
n列作れば、任意のn個の箱が、確率1で当たります(^^

もし、XOR’S HAMMERの任意関数の数当て解法が正しいなら
Sergiu Hart氏のpuzzle及び時枝記事の加算無限個数列の数当て解法なんて、ゴミでしょ(^^

だから、この点からも、XOR’S HAMMERの任意関数の数当て解法は、パズルに過ぎないと分かる(^^
56
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:08 ID:cTg/FCp5(56/94) AAS
>>55 関連

スレ45 2chスレ:math
612 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/08(水) 20:47:56.88 ID:V2sC1YiM [2/2]
(抜粋)

えーと、時枝の前に、まず、>>471-472の”XOR’S HAMMERの任意関数の数当て解法”(>>540)をやろう!
”XOR’S HAMMERの任意関数の数当て解法”は、>>541に書いたように、時枝の”加算無限個数列の数当て解法”を含んでいるが
これ、シンプルだ!

なぜなら、”XOR’S HAMMERの任意関数の数当て解法”は、たった1列で、かつ、決定番号を使わない!
一方、同値類 ”the equivalence relation on functions from R to R defined by f 〜 g iff for all but finitely many y, f(y) = g(y). ”と、当然選択公理も使うところが共通だから

で、言いたいことは、「なんで、XOR’S HAMMERの任意関数の数当て解法が不成立なのか?」、「なぜ、成立するように見えるのか?」
それ(XOR’S HAMMER)が見抜けないようでは、Sergiu Hart氏・時枝のパズルは分からんだろう?(>>543

なお、”XOR’S HAMMERの任意関数の数当て解法”には、殆ど証明はついていないことを、念押ししておくよ

で、まず、この”XOR’S HAMMERの任意関数の数当て解法”は、まっとうな数学として成り立っているのか?(Y)、それとも数学を使った単なるパズルなのか?(N) Y or N ? ここからいこう(^^

追伸
ウソつきサイコパスのピエロと、落ちこぼれおじさんの ID:sCT94ejW は、無視しような(^^
57
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:10 ID:cTg/FCp5(57/94) AAS
>>56 関連

スレ45 2chスレ:math
666 名前:132人目の素数さん[sage] 投稿日:2017/11/10(金) 15:53:55.09 ID:lx5+65qp [6/9]
関数f:S→Rについてあるx∈Sを選んでf(x)の値を当てる件について

1. Sが有限集合の場合
→当てる方法なし

2. Sが可算無限集合の場合
→fと有限個のxで値が異なるだけのgをfと同値とする同値関係を定義し
 同値類の代表元f'をとれば、x∈Sについてf(x)=f'(x)となる確率は
 1に限りなく近くなる (*有限加法性が成り立つS上の測度で考える)

3. Sが区間[0,1]の場合
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
 fと同値とする同値関係を定義し同値類の代表元f'をとれば、
 x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)

上記のいずれの場合もS→R上の測度で考えるわけではない

つづく
58
(1): 哀れな素人 2017/11/12(日)09:10 ID:+pfSw07X(1/2) AAS
前スレの>>786
>数学の分からぬ馬鹿同士、仲良くなめ合ってろw

その数学の分らぬ馬鹿がお前なのだが(笑

ケーキを食べ尽くすことはできない。
1/2+1/4+1/8+……は1にはならない。

ということは理解できたのか、アホ豚の一石(笑
59
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:12 ID:cTg/FCp5(58/94) AAS
>>57 つづき
45 2chスレ:math
667 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/10(金) 17:20:10.32 ID:FAWGl2WG [6/9]
>>666

それの3.の場合で

>>471より)
"In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ]"

は、飛ばして、「fと上記区間内の測度0の集合上のxで値が異なるだけのgを」に折り込んじゃったわけ?
えーと、代表を選ぶ話もあったけど、省いたの?

実に、本質を捉えているので・・、
おれは賛成だけどね・・(^^

668 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/10(金) 17:24:57.03 ID:FAWGl2WG [7/9]
>>667 補足

まあ、(>>471の)数当ての本質は、それなんだわ(^^

以上
60
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:13 ID:cTg/FCp5(59/94) AAS
>>59 関連

スレ45 2chスレ:math
767 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 11:18:50.66 ID:nimHTkvQ [11/25]
>>666 戻る
"関数f:S→Rについてあるx∈Sを選んでf(x)の値を当てる件について
(抜粋)
3. Sが区間[0,1]の場合
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
 fと同値とする同値関係を定義し同値類の代表元f'をとれば、
 x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)"

これは、これで良いが
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ?

>>472より)”When, in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. ”
なのだから(^^
61
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:14 ID:cTg/FCp5(60/94) AAS
>>60 関連

スレ45 2chスレ:math
819 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 18:36:13.23 ID:nimHTkvQ [22/25]
>>817 補足

>>767より)
"関数f:S→Rについてあるx∈Sを選んでf(x)の値を当てる件について
(抜粋)
3. Sが区間[0,1]の場合
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
 fと同値とする同値関係を定義し同値類の代表元f'をとれば、
 x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)"

>>472より)”When, in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. ”
なのだから、x0を一つやれば、Bobのf(x)は、x0 以外全部分るんだ(^^

>>471より)"In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ]"
だったでしょ?

簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ

それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^

つづく
62
(1): 哀れな素人 2017/11/12(日)09:14 ID:+pfSw07X(2/2) AAS
>ギャハハハハハハ!!!
>さすが数学を知らない工学馬鹿、正真正銘のidiotだな

↑これはアホ豚の一石である(笑

中二のアホガキ丸出しのチンピラアホ文章(笑
63
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:15 ID:cTg/FCp5(61/94) AAS
>>61 つづき

820 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 18:45:58.31 ID:nimHTkvQ [23/25]
>>819 補足の補足

もっとはっきり言えば、それやっていることは

1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
3.代表f’(x)は、固定で、0以外も全部これを使う
4.つまりは、数学的には、Bobのf(x)をカンニングして代表f’(x)を作っているってことだ
5.だったら、当たるのは当たり前でしょ(^^

以上
64
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:17 ID:cTg/FCp5(62/94) AAS
>>63 関連

スレ45 2chスレ:math
827 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 21:47:34.10 ID:nimHTkvQ [24/25]
>>821 >>825
おまえら、笑える(^^

>>667で、おれ)
(抜粋)
"In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ]"
は、飛ばして、「fと上記区間内の測度0の集合上のxで値が異なるだけのgを」に折り込んじゃったわけ?

実に、本質を捉えているので・・、
おれは賛成だけどね・・(^^
(引用終り)

(で、サイコパスのピエロ)
>>671 名前:132人目の素数さん[] 投稿日:2017/11/10(金) 17:40:22.06 ID:lx5+65qp [8/9]
>>667
>” choose x in Step 2 with uniform probability from [ 0,1 ]" は、飛ばして

自明なことでも書かれてないと意識できないほど
馬鹿な畜生には数学は無理 諦めろ
(引用終り)

だったろ? これの言い訳でも考えろよ! サイコパスのピエロ!! 自分が、書いたことを忘れたんだろ? サイコパスだから・・(^^

以上
65: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:17 ID:cTg/FCp5(63/94) AAS
なお、時枝記事が成立するという立場の方は、下記へどうぞ。(いまさら、「成立する」という人も居ないと思いますが)
28 (High level people が自分達で勝手に立てた時枝問題を論じるスレ) 2chスレ:math

繰返しますが、
前39 で、数学セミナー時枝記事は終わりました。39は、別名 数学セミナー時枝記事の墓と名付けます

ここは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします
それで良ければ、どうぞ

時枝記事は、気が向いたら、たまに触れますが、私スレ主の気ままです
時枝記事“成立”の立場からのカキコや質問は、基本はスルーします。コピペで流します。たまに、忘れたころに取り上げます
66: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:17 ID:cTg/FCp5(64/94) AAS
以上、取り敢ず新スレを立てました
雑談希望の方は、どうぞ!(^^
67
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:21 ID:cTg/FCp5(65/94) AAS
「ぷふ」さん、こちらに移しておくよ
スレ43は、おれは使わないんだ(^^
2chスレ:math
現代数学の系譜 工学物理雑談 古典ガロア理論も読む43
18 名前:132人目の素数さん[] 投稿日:2017/11/12(日) 08:25:20.13 ID:GGaVEi9w
ここでいいかな?

現代数学の系譜 工学物理雑談 古典ガロア理論も読む45
2chスレ:math
>どこらへんがむしろなんだよw
>おまえはいつも なんとなく で数学を語る。
>頭悪いのに分かった風に語るタイプ。
>スレ主と同類。
分からないんですね?
ホントに確率事象についての認識ができてませんよ

>『確立事象』と『確率自称』とか、どう気をつければそんな間違いを起こせるのかもよくわからん。
>確率事象を分かってないのはオマエだろ!と突っ込みたくなる気持ちを分かれw


>>>505
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない
>
>しまいには勝手に元問題を改変して
>『これが正しい問題設定』 『この問題設定では当てられません』
>とドヤ顔で主張してくる。
>この点もスレ主と同類。
改変ではなく君たちの認識が誤っていることを指摘しただけ

fを選ぶ(関数空間の中から)
x0を選ぶ(選び方はどうでもいいよ)
x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)
g(x0)がどのような値であったとしてもf(x0)=g(x0)となる確率は0なのだな
ここで重要なのは{x|f(x)=g(x),x≠x0}と{x|f(x)≠g(x),x≠x0}が有限であろうが無限であろうが
f(x0)=g(x0)かどうかとは全く関係しないってこと
単に{x|f(x)=g(x),x≠x0}と{x|f(x)≠g(x),x≠x0}が定まるというだけ
x≠x0以外のf(x)を開示した時点で他のf(x)は確率変数でなくなることに気付いていない人が大部分みたいで
気付いていて煙に巻いている人にダマサれてることに気付いてないw

>まずは>>822 >>824を読め。
>じっくり考えて完璧な回答を寄越せ。
何が確立事象確率変数であるか君こそよく考えた方がいいよ
68
(1): 2017/11/12(日)09:23 ID:tybpW7Vy(1/7) AAS
>>1への問題(大学1年程度)

Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
69
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:29 ID:cTg/FCp5(66/94) AAS
>>67
「ぷふ」さん、どうも。スレ主です。
全面同意。同じことを、通俗的なたとえ話で、>>63に書いた(^^
70
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:31 ID:cTg/FCp5(67/94) AAS
>>68

分からない問題はここに書いてね436
2chスレ:math
71: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:35 ID:cTg/FCp5(68/94) AAS
>>62
哀れな素人さん、どうも。スレ主です。

>>ギャハハハハハハ!!!
>>さすが数学を知らない工学馬鹿、正真正銘のidiotだな
>
>↑これはアホ豚の一石である(笑

情報ありがとうございます(^^
これからもよろしく

まあ、ピエロは常人と違うサイコパス
彼はすぐ、我を忘れて本性を現すんだな (^^
72
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:42 ID:cTg/FCp5(69/94) AAS
>>70 自己レス

これ良いな(^^
これからは、つまらん出題は、「分からない問題はここに書いてね」に投げよう!!(^^
73: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)09:55 ID:cTg/FCp5(70/94) AAS
>>67

横レスで悪いが
この>>67が分らないようじゃ、時枝記事を論じる資格なしだな〜(^^
74
(9): 2017/11/12(日)10:30 ID:8hZGWxI0(1/2) AAS
>>67
外部リンク:xorshammer.com
ぷ君は英語はできるよな?まずはきちんと読み返してきてくれ。

> fを選ぶ(関数空間の中から)
> x0を選ぶ(選び方はどうでもいいよ)

これは『fとx0は任意に与えられたものとする』ということでよろしいな?
これが意味することは、fとx0は確率変数ではない、ということである。
明らかにx0∈[0, 1]を一様分布で選ぶとする 元 問 題 と は 異 な る のである。
> In Step 2, choose x with uniform probability from [0,1]
ぷ君が 問 題 を 改 変 しているのは明らかである。

> fを選ぶ(関数空間の中から)
> x0を選ぶ(選び方はどうでもいいよ)
> x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)

ぷ君の言うf(x0)は確率変数ではない。
ぷ君の独自設定では、f も x0 も 確 率 変 数 で は な い からである。
ぷ君は『自分が分からないもの=確率変数』だと思っているだろ?
違 い ま す 。

fもx0も事前に与えられて(固定されて)いるのでf(x0)は確定している。
ぷ君に知らされていないだけで、f(x0)は確定しているのである。
f(x0)はRの元のどれか、1か2かπか別のどれか、とにかくある1つのRの元である。
fもx0も確率変数でない以上、f(x0)は確率変数ではない。
もしこの簡単な理屈が分からなければ 分かりません と言え。

さらに言えばオマエの独自設定では確率も糞もない。
なぜなら確率空間が設定されていないからであるw

ぷ君がきちんと理解したか、確認問題を出させてもらう:

[確認問題]
前スレのぷ君の『x=0戦略』を考える。
全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
すなわちこの問題ではxは確率変数とみなせる。
fもgも任意であり、事前に与えられているとする。
このときf(0)=g(0)となる確率は?

※この問題で回答を間違えたらもう後はないw

(ぷ君以外は黙っていてくださいね)
75
(4): 2017/11/12(日)10:37 ID:tybpW7Vy(2/7) AAS
>>70
ん?私は当然答えを知っているが?
>>72
>つまらん出題
もしかして、答えが分からないのかな?

ということで

>>1への問題(大学1年程度)

Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
76: 2017/11/12(日)10:43 ID:tybpW7Vy(3/7) AAS
>>75

>>1へのヒント
無理数上での値は定数、としてよい
77
(1): 2017/11/12(日)10:53 ID:tybpW7Vy(4/7) AAS
>>75
Q1、Q2は検索すれば見つかる
Q3は、とある有名なテクストに載っている

ま、どうせ考えても思いつかないんだから、
必死でサーチするんだね
78
(4): 2017/11/12(日)10:55 ID:8hZGWxI0(2/2) AAS
>>74
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。

{1}と書いてしまったが、{0}とする。この標本をx0とする。
(x0(1)=0なる可測関数を考えてもよいが回りくどいので訂正しておく)
79
(1): 2017/11/12(日)16:15 ID:YCWXE/2C(1/5) AAS
スレ主もぷも自説は雄弁に述べるが問題を出されると弱いなw
80
(1): 2017/11/12(日)16:24 ID:tybpW7Vy(5/7) AAS
>>79
だね。

>>1への問題(大学1年程度)

Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ

>>1は軽率だから、てっきり
「有理数で不連続、無理数で連続? そんなことあるわけねぇ!」
と吠えるかとおもったがw
81
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:33 ID:cTg/FCp5(71/94) AAS
>>80

分からない問題はここに書いてね436
2chスレ:math 問題

2chスレ:math A1

2chスレ:math A2
82
(1): 2017/11/12(日)16:38 ID:tybpW7Vy(6/7) AAS
>>81
これ大学数学の常識なんだけどな
83
(6): 2017/11/12(日)16:44 ID:tybpW7Vy(7/7) AAS
Q1. [0,1]上至るところで不連続な関数を1つ示せ
A1. ディリクレの関数
   有理数で1 無理数で0

外部リンク:ja.wikipedia.org

Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
A2. トマエの関数
   有理数rが既約分数p/qで表されるとき、1/q 無理数で0

外部リンク:ja.wikipedia.org

で、Q3の答えはまだ見つからないのかい?(ニヤリ)
84
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:48 ID:cTg/FCp5(72/94) AAS
>>63 関連

ピエロくん、これだれの発言かな?(^^
この発言正しいよ。

”何回も試行する場合に変化するのはfではなくx”
つまり、xは変化しても、fは変化しないし、代表f’も変化しない!(^^

サイコパスは、忘れているかな?(^^

45 2chスレ:math
(抜粋)
738 名前:132人目の素数さん[sage] 投稿日:2017/11/11(土) 07:52:57.35 ID:9+uC0Qtj [6/26]
>>716
>必要なのはある値(この場合x=0)におけるf(0)を予想するということ

x=0だと固定したがるのが馬鹿丸出し

「必要なのはある値xにおけるf(x)を予想するということ」
でいい。

何回も試行する場合に変化するのはfではなくx
(引用終り)
1-
あと 608 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.027s