[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
456(2): 2017/11/21(火)08:42 ID:cl7UYlaS(15/20) AAS
>>454
どこの誰かも知らぬ人の論文を書くアドバイスは一切不要である。
アドバイスをしたいなら、せめて所属先などを明記すべきである。
お前さんが院生であったり博士号取得者はあるけど…という可能性もある。
所属先などは書かないと、信憑性に欠けた内容になりかねない。
457(1): 2017/11/21(火)08:44 ID:cl7UYlaS(16/20) AAS
>>455
失礼。
>>456は>>455宛て。
458(2): 2017/11/21(火)08:49 ID:X9h/AUBd(12/16) AAS
>>454 >>456
>アドバイスをしたいなら、せめて所属先などを明記すべきである。
>・・・
>所属先などは書かないと、信憑性に欠けた内容になりかねない。
俺が書いたことは極めて常識的かつ普通の内容であり、
所属先の有無で説得力や信憑性が変化するようなものではない。
なんたって、俺が言ってることは
「 tex の勉強は程々にしとけ。草案レベルでいいから論文を書き上げてみろ。
まずはアウトプットが大事だ。そこを土台にして質を上げろ。」
という、誰にでも言える凡庸な内容に過ぎないんだからなw
この程度の内容に説得力も信憑性もクソもない。ただの常識である。
そして、その程度の常識に納得もせず実践もできてない おっちゃんは、
たぶん10年たっても1本も論文書いてないと思うよ。本当に問題外なんだわ。
459(1): 2017/11/21(火)08:57 ID:cl7UYlaS(17/20) AAS
>>458
>たぶん10年たっても1本も論文書いてないと思うよ。本当に問題外なんだわ。
そもそも、各個人や世間、自然などにおける10年後のことは誰にも分からんし、
10年後のことを心配するのは杞憂だと思うよ。
私も含めて、お前さんが10年後生きているかどうかも分からない。
460(1): 2017/11/21(火)09:19 ID:X9h/AUBd(13/16) AAS
>>459
この人は何を言ってるんだろう。
こういうときに書かれる「10年後」みたいな表現は、
本人の危機感を呼び覚ますための定型文だろうに。
「確かに今のわたしの行動パターンでは、10年後ですら論文が全く書けてないかもしれないな」
といった "焦り" が全く見えてこない時点で、本格的に おっちゃんはダメ人間の部類だなと思いました。
「10年後は私やあなたが生きてるかどうかさえ分からない」なんていう発想はできるのに、
「いま生きてる この瞬間から早いうちに行動を起こさなければ」といった危機感は無いんですね。
1年後の 2018/11/21 の時点で論文が1本 書きあがってるかどうかの目途すら立たないんですね。
本当にやる気ないですね。ま、いいや。
おしまい。
461(1): 2017/11/21(火)09:49 ID:cl7UYlaS(18/20) AAS
>>453
>数学書と論文では分量が違いすぎるww
そうそう、書き易さでは数学書の方が論文より書き易いだろうな。
数学書を書くときも論文などを読むことはしばしばあるが、
特にこれといった何らかの新規性や新しいアイディアは余りいらない。
これに対して、論文を書くときは何らかの新規性や新しいアイディアなどは欠かせず、論文を読むことが非常に多いだろうしな。
>>460
>「10年後は私やあなたが生きてるかどうかさえ分からない」なんていう発想はできるのに、
>「いま生きてる この瞬間から早いうちに行動を起こさなければ」といった危機感は無いんですね。
>1年後の 2018/11/21 の時点で論文が1本 書きあがってるかどうかの目途すら立たないんですね。
10年後のことを書いた文章に何らかの意味付け或いはその文章の正当化をしてから
1年後のことに何らかの意味付けや期待をしようとする考え方は、手順前後で意味がない。
1年後のことを書いた文章に何らかの意味付け或いはその文章の正当化、期待を抱くことなどをしてから
10年後のことに何らかの意味付けをしようとしたりする考え方の方に、意味が生じる。
462(1): 2017/11/21(火)10:23 ID:X9h/AUBd(14/16) AAS
>>461
>そうそう、書き易さでは数学書の方が論文より書き易いだろうな。
いい加減に下らないので、お前の そういう詭弁には付き合わないが、一言だけ言わせてもらうと、
お前が論文を書かないことを数学書との比較による詭弁で正当化したところで、
それでお前が得るものと言えば、
・ 未だに草案レベルですら論文を書いてない
という虚しさだけだぞ。それで お前に何の得があるんだ?
目先の揚げ足取りばかり流暢に何行もレスしやがって、本当にバカだなお前。
その労力を論文を書く作業にあてればいいのに。
くだらない詭弁で屁理屈こねてるヒマがあったら、
さっさと論文を書いてみろやバカタレw
463(2): 2017/11/21(火)10:34 ID:cl7UYlaS(19/20) AAS
>>462
では参考までに1つ伺うが、一流ジャーナルのアクセプト率は何%位で、
一流ジャーナルへの掲載までにかかる時間はどの位になるのか?
まあ、はじめからそうしようとすると、数年以上はかかるだろうな。
464(1): 2017/11/21(火)10:47 ID:X9h/AUBd(15/16) AAS
>>463
アクセプト率は、公開している雑誌と公開していない雑誌がある。
・ 公開していない雑誌のアクセプト率は、知りようが無い。
・ 公開している雑誌のアクセプト率は、自分で調べればいいだけの話。
一般的には、一流誌は10%未満のアクセプト率で、
普通の雑誌なら50%くらいと言われているが、
こんな情報は実質的には参考にならない。
次に、ジャーナルへの掲載にかかる時間だが、これは論文の内容や
雑誌によって大きく変わる。数学の場合は長くなる傾向にあり、
普通は査読期間だけでも3カ月から6カ月程度の期間が設けられる。
査読者自体を見つけるのに苦労するケースでは、
その分だけ期間が長引くこともあると思われる。
が、1つ言えることは、投稿してから掲載される(アクセプトされたとしての話だが)までに
かかる総合的な期間が「数年以上」なんてのは まずない。
465(1): 2017/11/21(火)11:07 ID:cl7UYlaS(20/20) AAS
>>464
なるほど、一応参考になった。
TeX や LaTeX でテキトーに草案を書くという方針でよい訳か。
まあ、英語に不慣れなんだが、自分の将来のこともあるし書き始めてみるわ。
将来の成り行きは分からんけどな。
466: 2017/11/21(火)11:21 ID:X9h/AUBd(16/16) AAS
>>465
うむ。頑張れ おっちゃん。
467: 2017/11/21(火)17:47 ID:ea3AOVHS(1/2) AAS
9r1HQSkjFKGUpZGYKclkoLFe5HQExKYPQmyCxxy5xSA5yB2V32RAHIGwOMEFKYzycuL9VahX2APRjE2NwpjOScljwhTYsyRMn8fkPRLRx2RhF2QgYIBppvNGz3vpYE2FalY6Ink0JWu8r3qkWF4vgd5hMeYLcBLdb6p1Xbak7c2bk3FkyxgCyJnQNBu2bumqTpvnJ3xV
468(1): 2017/11/21(火)21:19 ID:IcS8CTB2(1/2) AAS
Texの勉強なんて草稿を書いた後でいいのにw
要するに
論文のネタになると思ってたものが、よくよく見なおしたら愚にもつかない代物だった
ってことでしょ?ぶっちゃけw
それが公知だったのか、そもそも間違いだったのかは知らんがw
469: 2017/11/21(火)21:20 ID:ea3AOVHS(2/2) AAS
��s�́AJR���s�w�����k��
�T���̏ꏊ�Ɉʒu���A�����ɍ
ݏZ���Ă��鐶�k�����⏗�q�
��k�̊F�����ɂ��A���ϒʂ
��Ղ����ƂȂ��Ă��
470(1): 2017/11/21(火)21:26 ID:IcS8CTB2(2/2) AAS
>>463
>では参考までに1つ伺うが、一流ジャーナルのアクセプト率は何%位で
優れた論文は100%、愚にもつかない論文は0%
統計値を知ったところで何の意味も無い
471(7): 2017/11/22(水)00:10 ID:Oxthj7dF(1) AAS
2chスレ:rikei
↑ ↑ ↑ ↑ ↑ ↑
472(6): 2017/11/22(水)03:14 ID:qQ5pDONu(1/3) AAS
>>468
>>470
余計なレスと運営乙。
473: 2017/11/22(水)07:06 ID:scqo9erK(1/3) AAS
ヤクザは滅べばいいのに
474(1): 2017/11/22(水)07:16 ID:8FdjpTKM(1/3) AAS
>>472
余計なレスと運営乙。
475: 2017/11/22(水)11:02 ID:qQ5pDONu(2/3) AAS
>>474
おっちゃんでした。
476: 2017/11/22(水)11:50 ID:qQ5pDONu(3/3) AAS
まあ、私に期待するまたは期待していた者がどこの誰かは全く分からないが、
暴力団などのように悪に染まった団体、そして2チャンの管理者といったような2チャンの組織の関係者、
などからの期待はお断りしておく。わざわざ暴力団のような悪い団体、
或いは2チャンの組織に染まってまで人生を有利に運ぶ気はない。
まあ、書き方から、私への期待者何某について読み取れることは
説得させる能力があって弁が立つような書き方をする者ということだ。
477: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:14 ID:mEHYOxL2(1/15) AAS
どうも。スレ主です。
しばらく、留守にしていました。
その間に、おっちゃんご活躍でしたね(^^
お疲れさまで〜す(^^
478(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:15 ID:mEHYOxL2(2/15) AAS
さて
>>409-410 >>417
"<[論理が飛躍した短絡的な結論]>
・確かに、数学では、変数が多いときに、例えば他の変数を固定して偏微分を考えることがある
・だが、偏微分だけで済ませて、”終わり”では大間違い
・もともとは、全て変数だったとすれば、便法に変数固定の偏微分を使ったとしても、最後は全変数への考究が必要だ
・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない"
(文系) High level people たちの<数学ディベート>(もどき?)について(>>8)
これ困ったものです(^^
なので、そろそろ手早く決着させましょう〜(^^
つづく
479(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:16 ID:mEHYOxL2(3/15) AAS
>>478 つづき
そのために、Taylor先生達の本と論文から、下記関連事項を3つ引用する。
(>>44-45より)
外部リンク[pdf]:pdfs.semanticscholar.org
[成書]The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems Hardin, Christopher S., Taylor, Alan D. November 26, 2012
(抜粋)
P109
Bibliography
[HT08b] Christopher S. Hardin and Alan D. Taylor. A peculiar connection between the axiom of choice and predicting the future. American Mathematical Monthly, 115(2):91{96, February 2008.
外部リンク:citeseerx.ist.psu.edu
[HT09] Christopher S. Hardin and Alan D. Taylor. Limit-like predictability for discontinuous functions. Proceedings of the AMS, 137:3123{3128, 2009.
外部リンク[pdf]:www.jointmathematicsmeetings.org
(引用終り)(注:PDFのURLは、私が付与した)
([HT08b](2008)が下記1)項関連、[HT09](2009)が下記2)項関連、[成書](2012)が3)項関連で、時間順です。)
(注:[HT08b] は、外部リンク:xorshammer.com
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
で 引用されており、かれの”Here’s a puzzle”の元ネタと思われる。
つづく
480(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:17 ID:mEHYOxL2(4/15) AAS
>>479 つづき
1)
さて、まず、[HT08b] より
(抜粋)
P91
1. INTRODUCTION.
We often model systems that change over time as functions from the real numbers R (or a subinterval of R) into some set S of states, and it is often our goal to predict the behavior of these systems.
Generally, this requires rules governing their behavior, such as a set of differential equations or the assumption that the system (as a function) is analytic.
With no such assumptions, the system could be an arbitrary function, and the values of arbitrary functions are notoriously hard to predict.
After all, if someone proposed a strategy for predicting the values of an arbitrary function based on its past values, a reasonable response might be,
“That is impossible. Given any strategy for predicting the values of an arbitrary function, one could just define a function that diagonalizes against it: whatever the strategy predicts, define the function to be something else.”
This argument, however, makes an appeal to induction:
to diagonalize against the proposed strategy at a point t, we must have already defined our function for all s < t in order to determine what the strategy would predict at t.
In fact, the lack of well-orderedness in the reals can be exploited to produce a very counterintuitive result: there is a strategy for predicting the values of an arbitrary function, based on its previous values, that is almost always correct.
Specifically, given the values of a function on an interval (?∞, t), the strategy produces a guess for the values of the function on [t,∞), and at all but countably many t, there is an ε > 0 such that the prediction is valid on [t, t + ε).
Noting that any countable set of reals has measure 0, we can restate this informally: at almost every instant t, the strateg predicts some “ε-glimpse” of the future.
つづく
481(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:18 ID:mEHYOxL2(5/15) AAS
>>480 つづき
Nevertheless, we choose this presentation because we find it the most interesting, as well as pedagogically useful.
For instance, “predicting the present” is a very natural way to think of the problem of guessing the value of f (t) based on f |(?∞, t).
2. THE μ-STRATEGY.
(詳細は略すので、原文ご参照。ここに引用するには、数学記号が複雑過ぎるので。)
P92
3. PREDICTING THE PRESENT.
(詳細は略すので、原文ご参照。ここに引用するには、数学記号が複雑過ぎるので。)
Corollary 3.4. If T = R and ∇ is <, then W0 is countable, has measure 0, and is nowhere dense.
What Corollary 3.4 tells us is that, if we model the universe as a function from the real numbers into some set of states, then the μ-strategy will correctly predict the present from the past on a set of full measure.
(In the following section, we show that, on a set of full measure, it correctly predicts some of the future as well.)
Note that these results concerning T = R are also valid when T is any interval of reals.
One needs to be cautious about interpreting this as meaning that the μ-strategy is correct with probability 1.
For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution), then
Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.
P95
W = {t ∈ R | the μ-strategy does not guess well at t }.
Theorem 5.1. The set W is countable, has measure 0, and is nowhere dense.
つづく
482(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:19 ID:mEHYOxL2(6/15) AAS
>>481 つづき
(一部仮訳)
推論3.4が示していることは、実数からある状態の集合に対する関数とするuniverseをモデル化すると、μ戦略は過去からの現在を完全な尺度で正しく予測するということです。
(次のセクションでは、on a set of full measureで、将来の予測も正しく予測されることを示しています)。
T = Rに関するこれらの結果は、Tが実数の任意の区間である場合にも有効であることに留意されたい。
これをμ戦略が確率1で正しいと解釈することには注意が必要です。
固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
ランダムなシナリオの概念をどのように定義するかによって異なります。
(引用終り)
<まとめ1>
ここに示した様に、何を固定するかで、確率が1になったり、0になったり、はたまた、存在しないかもしれない
ランダムなシナリオの概念をどのように定義するかによって異なる。
これが、[HT08b]の結論である!
つづく
483(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:19 ID:mEHYOxL2(7/15) AAS
>>482 つづき
2)
次に[HT09] より
(抜粋)
P3126
The derivation of this from our main result uses the upward topology on α in which, as we mentioned, the scattered sets are the finite subsets of α.
A known result that we extend here is Theorem 5.1 from [5] in which the present is predicted from an “infinitesimal” piece of the past, and the predictor is correct except on a countable set that is nowhere dense.
In terms of our framework here, we have the topology on R in which the basic open sets are half-open intervals (w, x]
(so f 〜x g if f and g agree on (w, x) for some w < x).
It is known that the scattered sets here are countable and nowhere dense.
The exact characterization of the error sets in this example (as scattered sets) was absent in [5].
[5] C. Hardin and A. Taylor, A peculiar connection between the axiom of choice and predicting the future, American Mathematical Monthly 115 (2008),
(一部仮訳)
ここで拡張した既知の結果は、[5]からの定理5.1であり、ここでは、過去の「無限小」の部分から予測され、予測は正しいとは言えない。
この例における誤差集合の正確な特徴付け(分散集合として)は[5]にはなかった。
(引用終り)
<まとめ2>
Taylor氏らは、[HT08b] の結論を否定している。
”予測は正しいとは言えない”&
”この例における誤差集合の正確な特徴付け(分散集合として)は[5]にはなかった”
という。
つづく
484(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:20 ID:mEHYOxL2(8/15) AAS
>>483 つづき
3)
最後に[(成書)The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems]より
(抜粋)
P76
7.3 Corollaries
The second result we derive concerns the extent to which "the present can be predicted based on the past."
Here, the exact characterization of the error sets occurs in Theorems 3.1 and 3.5 in [HT08b].
The derivation of this uses the topology on R in which the basic open sets are half-open intervals (w; x] (so f 〜x g if f and g agree on (w, x) for some w < x).
It is known that the scattered sets here are countable and nowhere dense.
The exact characterization of the error sets in this example (as scattered sets) was absent in [HT08b].
<まとめ3>
Taylor氏らは、[HT08b] の結論を否定している。([HT09]に同じ)
つづく
485(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/22(水)19:20 ID:mEHYOxL2(9/15) AAS
>>484 つづき
<結論>
1.以上より、[HT08b](XOR’S HAMMERのパズル元ネタ)は、著者自身の手([HT09]と[成書]と)で、否定されている。
”The exact characterization of the error sets in this example (as scattered sets) was absent in [HT08b].”
2.元々、[HT08b]中で
「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて、完全に嵌まっている訳では無かったが
しかし、その”1. INTRODUCTION”には、思わせぶりなことが書いてあり、ミスリードだろう。
3.XOR’S HAMMERは、勿論、きちんと[HT08b]中の注意書きは読んでいて、意識してあくまで、”Here’s a puzzle”と断っていることを注意しておく。
4.なお、XOR’S HAMMERのパズルに嵌まるのは、[HT08b]でのTaylor氏らの嵌まり方を見ると、素人衆がハマルのも、これは無理は無い面もある。
5.しかし、ハマッたままで、”固定!”とか勝手に叫ぶと、時枝でも同じく嵌まりの図だろう。
「何を固定するかで、確率が1になったり、0になったり、はたまた、存在しないかもしれない
ランダムなシナリオの概念をどのように定義するかによって異なる。
これが、[HT08b]の結論である!」(上記)をしっかり味わうように!!
以上
上下前次1-新書関写板覧索設栞歴
あと 207 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.034s