[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
291(1): 2017/11/18(土)18:16 ID:SxRpMzIL(9/12) AAS
>>285
>ID:SxRpMzILさん、おそらく文系だろう(不適切なつっこみだからね)(^^
などと煙に巻いて、0の”次”の実数を答えないんですね
答えないのは勝手ですが、自説が破綻していることを自ら認めたと解釈しますが
それでよいのですね?
292(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:29 ID:EemFP5PJ(23/34) AAS
>>290
そうそう、良い回答だな(^^
それも想定回答の一つかな?(^^
>>279の定義 ”[0,1]の場合、密度関数は[0,1]での定数関数1ね([0,1]以外では0)”を、具体的試行と結び付けなければ、定義はお経にすぎない
293(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:34 ID:EemFP5PJ(24/34) AAS
>>291
High level peopleにも達しない文系さん、ご苦労です(^^
>>278で、ピエロのフォローで救ってもらったことが、あなた理解できていませんね(^^
これあとで、説明する機会があると思いますよ(^^
294(1): 2017/11/18(土)18:36 ID:7x3OYgbz(2/7) AAS
>>288
> スレ主さんは確率論に滅法よわいので
> どうぞ、答えを述べたらどうですか?
>
> そうすると、スレ主>>> ID:LAjmabkB
> がはっきりするでしょうね(^^
ID変わったけどそれ俺な。
>>290に君のナンセンスな質問>>287への回答を書いといたんで。
言っちゃ悪いが君はちょっと頭のネジがアレですな。
サイコロを振る試行すら理解してないようで。
これもuniform probabilityですからねえ。
uniform probabilityで選ぶ(サイコロを振る)って言ってるのに、それがuniform probabilityかどうかを検証できるのか?ってすごまれてもね。
何かを検定するとか実験的に分布を推定しようとかそういう問題じゃないんですけど。
295(3): 2017/11/18(土)18:38 ID:ZcXWWwZM(12/23) AAS
>>285
>数学的には、二つに分けないといけない
また>>1の「俺が数学だ」が始まったなw
>1)実変数xを取ることの"連続的試行"の可否?
>(あなたは、実数は”全順序だけど整列順序じゃない”だから不可という)
「実数の順序に従って」といったのは君。だからできないといった。
実数の集合に対して、実数の大小の順序とは異なる整列順序を与えて
その整列順序に従って実行することは可能だが、そうしたところで
そこから確率が求まるかどうかは別の問題
>2)測度論的に、"連続的試行"をどう扱うか?
測度論では、>>1の単純素朴な"連続的試行"なんて扱わない
296: 2017/11/18(土)18:39 ID:7x3OYgbz(3/7) AAS
>>290
> そうそう、良い回答だな(^^
>
> それも想定回答の一つかな?(^^
一つかな?って。。。
あんたが想定していたかしていなかったかのどちらか1つでしょうが。
> >>279の定義 ”[0,1]の場合、密度関数は[0,1]での定数関数1ね([0,1]以外では0)”を、具体的試行と結び付けなければ、定義はお経にすぎない
解読できませんが説明は要りませんw
297(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:40 ID:EemFP5PJ(25/34) AAS
>>294
「俺」さんね。
と言われても、「はて?」だが(^^
>>290 には、>>292を返したよ(^^
298(2): 2017/11/18(土)18:44 ID:ZcXWWwZM(13/23) AAS
>>289
>ああ、 ID:ZcXWWwZM は、ピエロか(^^
>>1は「馬鹿」という言葉を用いるとピエロと判定するらしい
昆虫の判断基準は呆れるほど単純だw
299(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:47 ID:EemFP5PJ(26/34) AAS
>>295
ピエロくん、ご苦労(^^
小学生なのに、今日は、作文たくさん頑張ったね(^^
>実数の順序は全順序だけど整列順序じゃないから
全順序の定義を再確認乞う
>実数の集合に対して、実数の大小の順序とは異なる整列順序を与えて
いまは、実数の集合かい?
>測度論では、>>1の単純素朴な"連続的試行"なんて扱わない
今一度、確率論の本を開いてみたら?
ああ、すまん、ピエロは、確率論の本読めなかったんだね〜(^^
300: 2017/11/18(土)18:47 ID:ZcXWWwZM(14/23) AAS
>>287
>どうやって、”uniform probability”を検証しますか?
落ちこぼれは「無関係な問い」を発する傾向がある
この問いがそのいい例だ
301: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)18:50 ID:EemFP5PJ(27/34) AAS
>>298
大丈夫だよ
すぐ”哀れな素人”さんが、「こいつは一石だ」と判定してくれるさ(^^
302(1): 2017/11/18(土)18:51 ID:ZcXWWwZM(15/23) AAS
>>299
>>実数の順序は全順序だけど整列順序じゃないから
>全順序の定義を再確認乞う
全順序
外部リンク:ja.wikipedia.org
整列順序
外部リンク:ja.wikipedia.org
303(1): 2017/11/18(土)18:51 ID:7x3OYgbz(4/7) AAS
>>297
> 「俺」さんね。
> と言われても、「はて?」だが(^^
IDがLAjmabkBから7x3OYgbzへ変わってしまったよ、と丁寧に伝えただけなのだが。
「俺」という単語がスレ主にとっては気に食わなかったらしい。
> > そうすると、スレ主>>> ID:LAjmabkB
> > がはっきりするでしょうね(^^
>
> ID変わったけどそれ俺な。
304(2): 2017/11/18(土)18:51 ID:SxRpMzIL(10/12) AAS
>>293
>Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
と言ったのは他ならぬあなたですよ?
0の"次"の実数を何故答えられないのですか?
それすら答えられずにどうやって0から初めて1に達するまで続けるのですか?
305(3): 2017/11/18(土)18:54 ID:ZcXWWwZM(16/23) AAS
>>299
>>測度論では、>>1の単純素朴な"連続的試行"なんて扱わない
>今一度、確率論の本を開いてみたら?
では伊藤清「確率論」(岩波基礎数学選書) の何pに書かれてますか
当該箇所を引用してお示しください
できないでしょう?だって、書いてないものw
306(2): 2017/11/18(土)18:56 ID:7x3OYgbz(5/7) AAS
>>299
> 今一度、確率論の本を開いてみたら?
> ああ、すまん、ピエロは、確率論の本読めなかったんだね〜(^^
サイコロを振る試行すら理解できない人が他人に確率論の本を読めと煽るのは無しでお願いしたく。
>>287
> >>283
> >それ言ったらお前さんサイコロ振れないぞ。。。
>
> 良い指摘だ(^^
> 予想回答の一つだ(^^
>
> では、私が、1回の試行で、[0,1]のある数、例えば、0.5を選んだとする。これは、”uniform probability”ですかね?
>
> では、私が、4回の試行で、例えば、0と1/3と2/3と1とを選んだとする。これは、”uniform probability”ですかね?
>
> どうやって、”uniform probability”を検証しますか?(>>284)
307(1): 2017/11/18(土)18:57 ID:ZcXWWwZM(17/23) AAS
>>306
そもそも確率論の本を一冊も持ってない>>1が
他人に確率論の本を読めというのは、
>>1が自己中心的なサイコパスだから
308(1): 2017/11/18(土)18:59 ID:ZcXWWwZM(18/23) AAS
ということでこれから>>1を”サイコ”と呼ぶことにしたい
309(2): 2017/11/18(土)19:00 ID:SxRpMzIL(11/12) AAS
確率論どころか解析も線形代数も持ってないでしょ
εN論法がまるで理解できてないところを見ると
310: 2017/11/18(土)19:01 ID:ZcXWWwZM(19/23) AAS
サイコ>>1の特徴
・慢性的に平然と嘘をつく
・自尊心が過大で自己中心的
・口が達者で表面は魅力的
311(1): 2017/11/18(土)19:03 ID:ZcXWWwZM(20/23) AAS
>>309
そもそも大学の工学部を出たというのも嘘だと思う
工学部の学生でも知ってるようなことを知らないから
せいぜい高専卒だな
312(2): [age] 2017/11/18(土)19:03 ID:7x3OYgbz(6/7) AAS
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
スレ主の
「1回の試行ではダメだ。全部均等に実施しないとuniform probabilityとは言えない」
が面白かったので再度コピってage
晒したいのではなく名言だと思うので。
そういう人とは違う目線を全否定しちゃ人生つまらないもんね。
313: 2017/11/18(土)19:06 ID:ZcXWWwZM(21/23) AAS
サイコは学歴に対する強烈な劣等感があるから
大卒とか院卒とか平気で嘘をつく
いまどき工学部の学生だって教養課程の数学くらい知ってるが
サイコは実数の定義すらロクに知らない
大学1年の4月に必ず習うことなのに
314(1): 2017/11/18(土)19:09 ID:7x3OYgbz(7/7) AAS
>>311
> そもそも大学の工学部を出たというのも嘘だと思う
> 工学部の学生でも知ってるようなことを知らないから
> せいぜい高専卒だな
率直に言って高専を馬鹿にする君もひどいと思われ
出自を憎まず人を憎め、だろ
(なんか違うw)
315(1): 2017/11/18(土)19:12 ID:ZcXWWwZM(22/23) AAS
>>312
>全部均等に実施しないとuniform probabilityとは言えない
高校の「自称秀才」がまっさきに躓く「俺様定義」の石だな
>そういう人とは違う目線を全否定しちゃ人生つまらないもんね。
否定以前に肯定しようがない
そもそも全ての実数について1回ずつ実施したとして
それだけのことからどうやって確率を計算するつもりか
「確率論の本を読め」という人が確率論の本に必ず書かれてる
測度をまったく度外視してる時点でサイコはハッタリ野郎だと分かる
316: 2017/11/18(土)19:15 ID:ZcXWWwZM(23/23) AAS
>>314
>> せいぜい高専卒だな
>率直に言って高専を馬鹿にする君もひどいと思われ
馬鹿にはしていないよ
単に必要な教育を受けてないという意味で述べた
idiotというのも本来そういう意味
発達障害の程度を表わすものではない
317: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:53 ID:EemFP5PJ(28/34) AAS
どうも。スレ主です。
みなさん、元気だね〜(^^
レスありがとうよ!
318(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:54 ID:EemFP5PJ(29/34) AAS
さて
>>302
どうも、ご苦労さん
OK! その通り
で、正解だが、まず下記超限帰納法も確認してくれ(^^
今の場合、実数R全体じゃない。区間[0,1]限定だからね。超限帰納法が適用できる整列集合として、区間[0,1]は採用可能だよね
次に、下記の「確率論I, 確率論概論I 原隆 九州大学」のP69
”定義4.1.1 実数のパラメータt で番号づけられた確率変数の集まり{Wt}t∈R を確率過程と言う”も、確認よろしくね
つまり、確率変数の添え字は、実数のパラメータt で番号づけ可能だ(^^
最後に、整列集合(wikipedia)の(抜粋)も確認頼む(^^
外部リンク:ja.wikipedia.org
(抜粋)
超限帰納法
上記の形で自然数について定式化された数学的帰納法は、任意の整列集合に対して次のように一般化することができる。
この一般化を超限帰納法 (ちょうげんきのうほう、英: transfinite induction)という。任意濃度の集合は選択公理と同値な整列可能定理により整列順序を持つとすることができるので、選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる。
(引用終り)
(>>243より)
外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P69
4.1.2 確率過程とそのpaths
定義4.1.1 実数のパラメータt で番号づけられた確率変数の集まり{Wt}t∈R を確率過程と言う.
実数のバラメータt が整数値(やその一部分)のみをとる場合も確率過程と言う.確率変数自身
は実数値をとる場合を考えることが多いが,もっと一般の空間の値をとっても良い.
(引用終り)
319(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:55 ID:EemFP5PJ(30/34) AAS
>>318 つづき
外部リンク:ja.wikipedia.org
整列集合
(抜粋)
実数からなる集合
選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる。
R 上の定義可能な整列順序の存在は ZFC と(相対的に)無矛盾である。
同値な定式化
順序集合 X が全順序集合である場合には、以下の条件はどれも互いに同値である。
1)X は整列集合である。つまり、空でない任意の部分集合が最小元を持つ。
2)X の全体で超限帰納法が有効である。
3)X の元からなる任意の狭義単調減少列は必ず有限な長さで停止する(ただし、従属選択公理を仮定する)。
(引用終り)
以上
320(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)20:56 ID:EemFP5PJ(31/34) AAS
>>304-305 >>306 >>307-308 >>309 >>310-316
上記、>> 原隆 九州大学 ”定義4.1.1 実数のパラメータt で番号づけられた確率変数の集まり{Wt}t∈R を確率過程と言う”を、確認よろしくね(^^
伊藤清先生なら、別の本に類似事項(確率過程論)があると思うよ(^^
上下前次1-新書関写板覧索設栞歴
あと 372 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.035s