[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
242
(1): 2017/11/17(金)23:34 ID:XUjiYAZL(5/5) AAS
>>237
>時枝は、当てられないということがはっきりしたので、もう分らないところはないよ(^^
少し利口になったのかと心配したよ、だが安心した、サルが突然人間になるなんてあり得ないもんなw
243
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)07:11 ID:EemFP5PJ(1/34) AAS
>>231 補足

下記、確率論I, 確率論概論I 原隆 九州大学 より、キーワード”固定”の箇所抜粋
まあ、確かに、確率論で、キーワード”固定”を使っておりますが(^^

それ、きちんと数学的な効果を検証しながら、ステップを踏んで、使っている
貴方のように、むやみやたらと、自分勝手に、ご都合よく、”固定”を使って、「先生、証明できました!」というのは、如何なものか?(^^

それは、数学ではなく、似非数学では?

外部リンク[pdf]:www2.math.kyushu-u.ac.jp
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P20

註2.3.2 概収束と確率収束の定義が少しわかりにくいかも知れないので,補足しておく.

概収束の場合,確率空間の元ω を一つ固定し,この固定したω 毎に極限lim n→∞ Xn(ω) を考えて,
これがX(ω) に等しいか否かを問題にしている(等しくない確率がゼロ,つまり,等しくないよう
なω が無視できるほど少ないなら良い).

一方,確率収束の場合は,各n 毎に|Xn(ω)?X(ω)| > ε である確率を問題にしている.
つまり, |Xn(ω) ? X(ω)| > ε となるようなω は, n 毎に異なっても,とにかくその確率がゼロに行
けば良い.
(引用終り)
244: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)07:50 ID:EemFP5PJ(2/34) AAS
>>242
その発言で「猿の惑星」(下記)を思い出したよ(^^

ところで、下記スレ33の発言No233は、あなたでしょ
ID:PqWMwFYK君”は、数学科の人らしかった。が、あなたの”固定”暴論に、「話にならん」と逃げ出したと私は見ていますよ〜(^^

外部リンク:ja.wikipedia.org 猿の惑星シリーズ
(抜粋)物語では、進化した猿が支配する惑星が登場し、人間は知能のない動物として猿に狩られ奴隷とされる。(引用終り)

スレ33 2chスレ:math
(抜粋)
223 名前:132人目の素数さん[sage] 投稿日:2017/05/28(日) 19:00:53.06 ID:q2oArHoC [12/14]
おいID:PqWMwFYK君。俺のことを

>>200
> 頭のおかしい人

呼ばわりしたID:PqWMwFYK君。

俺の言うことが理解できたのか?
無礼な君に懇切丁寧に例(>>215)まで出してやったんだ。
「おかげさまで理解しました」ぐらいの返答があってもいいだろう?
あるいはまだ理解できないなら正直に言いなさい。
俺はお前のことを「有限確率空間すら分からない頭のおかしい人」と呼んだりはしない。

お前の無礼な発言については一言詫びがあっても良さそうなものだ。
俺は無礼な人間とは話したくもない(>>189)という気持ちをじっと抑え込んで
懇切丁寧にお前に付き合ってやったのだからな。
(引用終り)
245
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)08:03 ID:EemFP5PJ(3/34) AAS
>>240-241 補足の補足の補足

”Bob reveals”の情報は、いずれにせよ使わざるを得ない

1.(>>233の)正攻法で、事前に全ての関数を類別して、代表を決めておく場合
  ”Bob reveals”の情報は、同値類を特定するために必須
  つまり、同値類を特定するために必須の情報として、Bobの関数fについてほとんど全ての情報を必要とする

2.一方、(>>233の)手抜き法の場合でも、上記と同じだけの情報を必要とする(^^

これが、>>48の”The strategy”の数学的パズルの種明かし(^^
246
(1): 2017/11/18(土)08:29 ID:ZcXWWwZM(1/23) AAS
>>220 訂正
誤 スレ主はごまかし論理を見逃さない
正 スレ主は自分が理解できないとごまかし論理だと発狂する

誤 非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない
正 自分が間違ってるという結論では、話を絶対終わらせたくない

誤 そもそも書かれた証明が正しいかどうかは、落ちこぼれ素人衆に分るわけがない(^^
正 そもそも俺様が理解できない証明を、他人が理解できるなんて決して認めたくない(T_T)
247
(1): 2017/11/18(土)08:37 ID:ZcXWWwZM(2/23) AAS
>>67
>fを選ぶ(関数空間の中から)
>x0を選ぶ(選び方はどうでもいいよ)
>x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)

ハイ間違いw
fもx0も決めてしまったなら、f(x0)も決まってしまう

確率を求めるというなら、fかx0かのいずれかを確率変数とせねばならない
ぷふっちの、「x=0と固定してよい」は明らかにf(正確には全てのxについてのf(x))
が確率変数だとするもの

一方、XOR’S HAMMERのHere’s a puzzleにおける確率計算は、
fを固定した上で、xを確率変数とするもの

もとの関数fと同値類の代表元f’が有限個の点でしか異ならない時点で
xを選んでf(x)=f’(x)とならない場合は確率0
ただそれだけのこと わからんヤツは数学を理解できない馬鹿
248
(3): 2017/11/18(土)09:13 ID:ZcXWWwZM(3/23) AAS
>>220
>x≠x0以外のf(x)を開示した時点で他のf(x)は確率変数でなくなる

この世で生きてるのはボクちゃんだけ、とか思ってる独我論者かいw

無数の人がそれぞれ勝手にxを選んだとしよう
で、その中でnot(f(x)=f'(x))となるハズレxを引く人はまずいない
ってことだよ

自分が何回もやるんならそりゃ同じfは使えないから変えるしかない
そういうことに無意識なのが馬鹿
249
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)10:08 ID:EemFP5PJ(4/34) AAS
>>58
哀れな素人さん、どうも。スレ主です。

>1/2+1/4+1/8+……は1にはならない。

ここに戻るが

輓近代数学の展望(下記)
の後ろの解説(P492)で、飯高茂先生が、下記解説を書いているのを見つけたよ(^^

無限小数で
「1.0000・・・=0.9999・・・
 は定義なのである」と書かれている(^^

「さて、0.9999・・・はいつまでも1でない、と悩む人は多い。」
ともある

「それは数学的には正しいことではあるが、啓蒙書としてはやや不親切に過ぎよう。
 読者がもし納得したいと思ったら、微積分の冒頭にある本格的な実数論を勉強する必要がある。」
とも

なので、1/2+1/4+1/8+……は、2進数展開で、0.1111・・・だから、これ上記で言えば「これは、いつまでも1でない」ということ
2進数展開で、0.1111・・・は、定義しないと、「1にはならない」ということだろうね(^^

外部リンク:www.amazon.co.jp
輓近代数学の展望 (ちくま学芸文庫) 文庫 ? 2009/12/9 秋月 康夫 (著)
250
(24): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)10:59 ID:EemFP5PJ(5/34) AAS
>>247-248
これはこれは、粘着 High level peopleさん、いつも粘着ご苦労さまです(^^
「非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない」が、正解じゃないですか〜(>>246)(^^

爆笑暴論珍説「素人固定論」か
一つずついきましょうか

1.(>>47より)外部リンク:xorshammer.com
 SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
 (抜粋)
 Here’s a puzzle:
 1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).
 2)You pick an x ∈ R.
 (引用終り)
 だった

2.ところが、(>>48より)In Step 2, choose x with uniform probability from [ 0,1 ]. となって、”uniform probability”なる条件が、さりげなく入ってきた

3.”uniform probability”なる条件が、このパズルのキーワードの一つだ!

4.”uniform probability”をどう解釈するか? 一つの解釈として、過去スレで、下記を書いた。
 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
 だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)

つづく
251
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:00 ID:EemFP5PJ(6/34) AAS
>>250 つづき

 <引用>
 スレ45 2chスレ:math
 (抜粋)
 ”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
 x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ

 それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
 これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^
 (引用終り)
 注:x=0を、あるx0∈[ 0,1 ] としてもよい。

5.これだと、「素人固定論」は不要ですよ。

6.あなたがハマルのは無理ないです。多くの人がハマってますから。(^^

以上
252
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:05 ID:EemFP5PJ(7/34) AAS
>>251 補足

>>248より)
>自分が何回もやるんならそりゃ同じfは使えないから変えるしかない

これは、上記 >>251
「 ”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける」ですよ(^^
253
(3): 2017/11/18(土)11:42 ID:RBhqALIo(1) AAS
>>248

すでにxは選んでるんですけど
そしてf(x)=g(x)である確率は1なのですよ
ぷふ
254: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)11:47 ID:EemFP5PJ(8/34) AAS
>>253
「ぷふ」さん、どうも。スレ主です。
ご健在でなによりです。(^^

「非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない」(>>220)ですが(^^
気長にお付き合いをよろしくお願いします。m(_ _)m
255
(1): 2017/11/18(土)12:08 ID:SxRpMzIL(1/12) AAS
>”choose x in Step 2 with uniform probability from [ 0,1 ]”
をどんな誤訳すれば
>Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
になるの?
256
(1): 2017/11/18(土)13:35 ID:LAjmabkB(1/5) AAS
>>253
おまえ逃げ回ってる ぷ君 じゃん
257
(2): 2017/11/18(土)13:38 ID:LAjmabkB(2/5) AAS
再度言いますが、ぷ君の回答>>94は不正解です。
断固不正解。理由はまだ分からないようでw

>>95
> >>94
> > 全く意味がないことばかり書くのね
> > 別にx0が毎回変わってもいいよ
> > f(x0)以外が開示されているということが重要
> > x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
>
> 予想どおりの回答をありがとう。不正解ですw
> なんで不正解か分かりますか?
>
> >>74 >>78
> > [確認問題]
> > 前スレのぷ君の『x=0戦略』を考える。
> > 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> > すなわちこの問題ではxは確率変数とみなせる。
> > fもgも任意であり、事前に与えられているとする。
> > このときf(0)=g(0)となる確率は?
258
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)13:53 ID:EemFP5PJ(9/34) AAS
>>255
訳じゃなく、数学的解釈だよ

”choose x in Step 2 with uniform probability from [ 0,1 ]”

もし、一回の試行なら、”uniform probability”にならないこと、分りますか?(^^
259
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)13:57 ID:EemFP5PJ(10/34) AAS
>>256-257

はいはい、High level peopleさん、頑張ってね(^^
一時は、”成りすまし”とか、そちらに救いを求めていたようですね〜。残念でしたね〜!(^^
260
(2): 2017/11/18(土)14:13 ID:LAjmabkB(3/5) AAS
自分に見えない数字はみな確率変数であるというのが ぷ君 の持論である
ちなみにぷ君は前スレで
>>>505
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない

と確立もとい確率事象の見分けに自信がお有りのようだったw
にも関わらず>>95はぷ君には意味が分からないらしい

もっと簡単で誰にでもわかる問題を出そう
スレ主も答えていいぞ笑 
ぷ君を援護してやれ

---
目の前に封筒があり、中には6以下の自然数xが書かれたカードが入っている
ぷ君に封筒の中身は見えない
--

さて、ぷ君に質問だ

問1
この自然数xは確率変数か?

確率変数であるというなら証明せよ。
すなわち、xがどのような標本空間と測度で選ばれるのかを一切の仮定なしに示せ
(示せるものなら笑)

問2
ぷ君は箱の中身xが1であると睨んだ
ぷ君お得意のx=1戦略である
この予想が正しい確率を一切の仮定なしに求めよ
(求められるものなら笑)

問3
ぷ君はサイコロを振ることにした
出目と封筒の中身が一致する確率を求めよ
261
(3): 2017/11/18(土)14:21 ID:SxRpMzIL(2/12) AAS
>>258
話にならないほどアホですね
262
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)14:26 ID:EemFP5PJ(11/34) AAS
>>261
で、あなたの数学的解釈は、如何か?

回答次第では(回答不能ないし、バカ回答で)、「スレ主>>>ID:SxRpMzILが、決定!!」 だな(^^
263
(1): 2017/11/18(土)14:42 ID:ZcXWWwZM(4/23) AAS
>>250
”uniform probability”だから、確率変数はxだとわかるんですがね

ついでにいうと、私の書き込みが、
あるときはピエロ、またあるときはHigh level people
と判定されますが・・・
結論からいえば、同じIPから書いてるので、
IP情報が見られる人なら違う判断になることはない筈
です

つまりあなたは管理人の権限を有しないと判断されます
264
(1): 2017/11/18(土)14:44 ID:SxRpMzIL(3/12) AAS
>>261
>で、あなたの数学的解釈は、如何か?
読んだままですよ
>[ 0,1 ]の0から初めて1に達するまで、続ける
などと書かれてもいないことを勝手に付け加えることなく読んだままです。
このような平易な文章には解釈もクソもありません。
265: 2017/11/18(土)14:44 ID:ZcXWWwZM(5/23) AAS
>すでにxは選んでるんですけど

選ぶのはxでしょ?だからxが確率変数ですよ

>そしてf(x)=g(x)である確率は1なのですよ

xについての一様測度に基づいた確率で1、ということですよ

数学科の学生なら即座にわかります
うそだと思うなら数学科の学生に聞いてごらんなさい
10人いれば9人はそう答えます
あとの1人? まあ中には落ちこぼれもいますからね
266: 2017/11/18(土)14:45 ID:SxRpMzIL(4/12) AAS
訂正 ✖>>261 〇>>262
267
(6): 2017/11/18(土)14:52 ID:ZcXWWwZM(6/23) AAS
>>258
>もし、一回の試行なら、”uniform probability”にならないこと、分りますか?(^^

君、何が問題か分かってないだろ?

まず
「[ 0,1 ]の0から初めて1に達するまで」
とかいう実数の順序に従った試行条件は必要ない
(そもそも実行不可能だが)

さらに単に[ 0,1 ]から点を選ぶというだけでは
”uniform probability”でない選び方もできる
選び方の指定として”uniform probability”と述べている

大学三年で確率論を学んだ人なら
一様確率分布は知っていて当然なんだがね
268
(2): 2017/11/18(土)15:05 ID:ZcXWWwZM(7/23) AAS
XOR’S HAMMERでも箱入り無数目でも
関数f:[0,1]→Rや、数列s:N→Rは
確率変数ではない
(確率変数だと思い込むと間違う)

XOR’S HAMMERでは、選んだ点x∈[0,1]が確率変数だし
箱入り無数目では、選んだ列の番号i∈{1,・・・,100}が確率変数となる

後者についてはHigh Level Person氏が初めから主張していた
(おそらく一人と思われるので”Person”とした)
ピエロ氏はsを確率変数としても正当化できると主張していたが
その場合積分の順序交換に関する新公理を導入せざるを得ない
ことに気づいてこの主張を放棄したようだ

今回、fを確率変数とした場合の正当化に
いかほど強力な新公理が必要となるのか不明だが
そもそもXOR’S HAMMER氏の主張とは異なるので
考慮する必要はない
(数学的興味から考えるのは随意であるが、素人には無理
 ちなみに確率論の問題ではなく集合論の問題)
269
(2): 2017/11/18(土)15:09 ID:ZcXWWwZM(8/23) AAS
箱入り無数目も、別にわざわざ100列にわけずに
列の勝手な箱を選ぶという形でもよかった筈だが
そうしなかったのは、可算無限集合上の測度では
有限加法性しか保証できないので、一般的でない
と考えたのだろう
  
270: 2017/11/18(土)15:13 ID:SxRpMzIL(5/12) AAS
>もし、一回の試行なら、”uniform probability”にならないこと、分りますか?(^^
どんな脳をしてたらこんな言葉が出て来るのやら
271
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/18(土)15:14 ID:EemFP5PJ(12/34) AAS
>>264
話にならないほどアホですね

せめて、>>267-268程度は書かないと・・・、

「スレ主>>>ID:SxRpMzILが、決定!!」 だな(^^
1-
あと 421 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.039s