[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
76: 2017/11/12(日)10:43 ID:tybpW7Vy(3/7) AAS
>>75
>>1へのヒント
無理数上での値は定数、としてよい
77(1): 2017/11/12(日)10:53 ID:tybpW7Vy(4/7) AAS
>>75
Q1、Q2は検索すれば見つかる
Q3は、とある有名なテクストに載っている
ま、どうせ考えても思いつかないんだから、
必死でサーチするんだね
78(4): 2017/11/12(日)10:55 ID:8hZGWxI0(2/2) AAS
>>74
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
{1}と書いてしまったが、{0}とする。この標本をx0とする。
(x0(1)=0なる可測関数を考えてもよいが回りくどいので訂正しておく)
79(1): 2017/11/12(日)16:15 ID:YCWXE/2C(1/5) AAS
スレ主もぷも自説は雄弁に述べるが問題を出されると弱いなw
80(1): 2017/11/12(日)16:24 ID:tybpW7Vy(5/7) AAS
>>79
だね。
>>1への問題(大学1年程度)
Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>>1は軽率だから、てっきり
「有理数で不連続、無理数で連続? そんなことあるわけねぇ!」
と吠えるかとおもったがw
81(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:33 ID:cTg/FCp5(71/94) AAS
>>80
分からない問題はここに書いてね436
2chスレ:math 問題
2chスレ:math A1
2chスレ:math A2
82(1): 2017/11/12(日)16:38 ID:tybpW7Vy(6/7) AAS
>>81
これ大学数学の常識なんだけどな
83(6): 2017/11/12(日)16:44 ID:tybpW7Vy(7/7) AAS
Q1. [0,1]上至るところで不連続な関数を1つ示せ
A1. ディリクレの関数
有理数で1 無理数で0
外部リンク:ja.wikipedia.org
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
A2. トマエの関数
有理数rが既約分数p/qで表されるとき、1/q 無理数で0
外部リンク:ja.wikipedia.org
で、Q3の答えはまだ見つからないのかい?(ニヤリ)
84(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:48 ID:cTg/FCp5(72/94) AAS
>>63 関連
ピエロくん、これだれの発言かな?(^^
この発言正しいよ。
”何回も試行する場合に変化するのはfではなくx”
つまり、xは変化しても、fは変化しないし、代表f’も変化しない!(^^
サイコパスは、忘れているかな?(^^
45 2chスレ:math
(抜粋)
738 名前:132人目の素数さん[sage] 投稿日:2017/11/11(土) 07:52:57.35 ID:9+uC0Qtj [6/26]
>>716
>必要なのはある値(この場合x=0)におけるf(0)を予想するということ
x=0だと固定したがるのが馬鹿丸出し
「必要なのはある値xにおけるf(x)を予想するということ」
でいい。
何回も試行する場合に変化するのはfではなくx
(引用終り)
85: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:50 ID:cTg/FCp5(73/94) AAS
>>83
しらんな
「分からない問題はここに書いてね」を、まてば〜(^^
86: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)16:51 ID:cTg/FCp5(74/94) AAS
>>82
なるほど、必死の話題逸らしか(^^
87(8): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:04 ID:cTg/FCp5(75/94) AAS
>>61 補足
>簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
>x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)−f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当りのとき)は値0、となる関数Δ’fを考える
2)関数Δ’fを、ルベーグの意味で、xについて区間[ 0,1 ]で積分する
3)不一致が、上記区間内の測度0ゆえ、積分値は1
4)このことを、通俗的に書いたものが>>63であるにすぎない(落ちこぼれは英語が読めないらしい(^^ )
補足終り
以上
88: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:07 ID:cTg/FCp5(76/94) AAS
>>84 訂正
45 2chスレ:math
↓
45 2chスレ:math
89(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:09 ID:cTg/FCp5(77/94) AAS
>>87 訂正
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当りのとき)は値0、となる関数Δ’fを考える
↓
1)Δf = f(x)−f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当らないとき)は値0、となる関数Δ’fを考える
90: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:09 ID:cTg/FCp5(78/94) AAS
不致→不一致か(^^
91(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)17:29 ID:cTg/FCp5(79/94) AAS
>>83
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>これ大学数学の常識なんだけどな
おっちゃん、出番だよ〜(^^
92(1): 2017/11/12(日)17:40 ID:hePUuc7P(1/13) AAS
>>87
> 4)このことを、通俗的に書いたものが>>63であるにすぎない
通俗的ですか。そういう言い訳は聞いたこともないくらい苦しく痛々しい。
>>63
> 1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
> 2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
f(x)が分かってから、ではありませんけど?
外部リンク:xorshammer.com
をよく読みましょうよ。
> Using the axiom of choice, pick a representative from each equivalence class.
これと
> Bob reveals {(x_0, f(x_0)) | x_0 ≠ x}
これ。どちらが先ですかねー?よく読んで答えましょうねー。
> 4.つまりは、数学的には、Bobのf(x)をカンニングして代表f’(x)を作っているってことだ
> 5.だったら、当たるのは当たり前でしょ(^^
結論出す前に問題を理解するほうが先ですねー。
93(2): 2017/11/12(日)17:48 ID:bcdob+HV(1/4) AAS
>>69
どうもここにはあなたしか確率のことを理解できてる人はいないみたい
94(4): 2017/11/12(日)17:53 ID:bcdob+HV(2/4) AAS
>>74
全く意味がないことばかり書くのね
別にx0が毎回変わってもいいよ
f(x0)以外が開示されているということが重要
x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
95(5): 2017/11/12(日)17:57 ID:hePUuc7P(2/13) AAS
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74 >>78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
96: 2017/11/12(日)18:00 ID:YCWXE/2C(2/5) AAS
スレ主自演下手過ぎw
97: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)18:08 ID:cTg/FCp5(80/94) AAS
>>93
>どうもここにはあなたしか確率のことを理解できてる人はいないみたい
「ぷふ」さん、どうも。スレ主です。
いや、私もそんなに確率論は詳しくないが
ともかく、落ちこぼれ素人衆には、困ったものです(^^
98(1): 2017/11/12(日)18:16 ID:YCWXE/2C(3/5) AAS
自分で自分を褒め讃えて楽しい?
99(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)18:18 ID:cTg/FCp5(81/94) AAS
>>92
>> 1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
>> 2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
>
>f(x)が分かってから、ではありませんけど?
分かり易く、お話風に書いただけのことで、数学的には同じこと
つまり、それ全ての関数を、事前に同値類に、全て分類するということだが・・
Bobのf(x)が、どの同値類に属するかを判定するためには、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知る必要がある
それは、どの同値類に属するかを判定する前だろ
だったらさ、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知って、
それから知ったf(x)について、同値類g(x)たちを作って、代表f’(x)を決めれば数学的には全く同じことだよ!!(^^
100(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)18:19 ID:cTg/FCp5(82/94) AAS
>>98
そこに救いを求めるかね〜(^^
101(2): 2017/11/12(日)18:22 ID:YCWXE/2C(4/5) AAS
救いは求めてないw
みっともなさに呆れてるだけw
102(1): 2017/11/12(日)18:25 ID:bcdob+HV(3/4) AAS
>>101
ぷ
103(1): 2017/11/12(日)18:28 ID:YCWXE/2C(5/5) AAS
分かり易過ぎるw
見てるこっちが恥ずかしくなるw
104: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)19:05 ID:cTg/FCp5(83/94) AAS
>>103
そこに救いを求めるかね〜(^^
105: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)19:15 ID:cTg/FCp5(84/94) AAS
>>99 追記
重ねて書いておこう
1.「Bobのf(x)が、どの同値類に属するかを判定するためには、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知る必要がある
それは、どの同値類に属するかを判定する前」ってこと
2.この(上記1の)時間の前後は、絶対に変えられない!(^^
3.であれば、「事前に全部の関数を同値類に分類しておくこと」と、「事後的に知ったf(x)について、同値類g(x)たちを作って、代表f’(x)を決めること」と、
この二つは数学的には同値!!
4.なぜなら、どちらも、Bobのf(x)の公開された無限個(正確には連続無限)のf(x)の値を使っていて、そこがキモだからだよ(^^
上下前次1-新書関写板覧索設栞歴
あと 587 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.022s