[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む45 (835レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
371
(1): 現代数学の系譜 工学物理雑談 古典ガロア理論も読む 2017/11/04(土)09:47 ID:sjIJjomh(5/26) AAS
>>370 つづき

633 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/10/22(日) 14:11:05.95 ID:jBlaYViq [6/14]

6)補足4:多項式環K[x]の完備化が形式的冪級数環K[[x]]になること

外部リンク:ja.wikipedia.org
完備化 (環論)
(抜粋)
R = K[x_1,・・・,x_n] を体 K 上の n 変数多項式環とし、 m=(x_1,・・・ ,x_n)を変数によって生成された極大イデアルとする。
このとき完備化 R_mは K 上の n 変数形式的冪級数環 K[[x_1,・・・,x_n]] である[4]。
(引用終り)

(同英語版)
外部リンク:en.wikipedia.org
Completion (algebra)
(抜粋)
Examples

2. Let R = K[x_1,・・・,x_n] be the polynomial ring in n variables over a field K and m=(x_1,・・・ ,x_n) be the maximal ideal generated by the variables.
Then the completion R_m is the ring K[[x_1,・・・,x_n]] of formal power series in n variables over K.
(引用終り)

以上

つづく
372
(6): 現代数学の系譜 工学物理雑談 古典ガロア理論も読む 2017/11/04(土)09:51 ID:sjIJjomh(6/26) AAS
>>371 つづき

で、本題(^^
<おちこぼれ達のための補習講座10>
1.<おちこぼれ達のための補習講座9>にあるように、可算無限数列のしっぽによる同値類〜と代表との関係は、形式的冪級数環を、ある一つの形式的冪級数を代表として、そのしっぽ(指数の高い項の一致で)の同値類〜を考えることに同じ。

2.同じ同値類の形式的冪級数二つ
(第m+1項からしっぽが一致するとして)
f =a0+a1*X+a2*X^2+a3*X^3+・・・+am*X^m+ am+1*X^m+1 +・・・
f'=a'0+a'1*X+a'2*X^2+a'3*X^3+・・・+a'm*X^m+ am+1*X^m+1 +・・・

f-f'= (注:多項式になる)
(a0-a'0)+(a1-a'1)*X+(a2-a'2)*X^2+(a3-a'3)*X^3+・・・+(am-a'm)*X^m+ 0*X^m+1 +0*X^m+2 +・・・

なので、f-f'=ΔP(X) とおくと
f'=f−ΔP(X) と表わすことができる

3.fを出題された数列に対応する形式的冪級数、f'を代表に対応する形式的冪級数とすると、決定番号dは d=m+1 つまり、多項式ΔP(X)の次数m プラス1になる
4.素人衆が間違っているのは、各列の決定番号 d=m+1を直接選べるように勘違いしているところだよ。選べるのは、多項式ΔP(X)
5.多項式ΔP(X)を選ぶ場合、例えば任意の2次多項式を選ぶことは、(係数が3つなので)3次元空間の1点を選ぶが如し。
  つまり、任意の3次元空間の1点(a0,a1.a2)を選んだとき、確率1でa2≠0 であり、2次式が1次や0次に退化することはない(1次や0次は零集合)
6.同様に、m次の場合、m+1次元空間の1点を選ぶが如しで、確率1で、より低次元に退化することはない
7.さて、上記より、多項式環において多項式の次数の上限はないから、ある常数Dに対して、多項式環から選んだ100個の多項式の次数、d1,d2,・・・d100 がいずれもD以下になる確率は0

QED
(これは、”無限”が分っていないと、理解できないだろうな。思うに、プロの目から見れば、ここらがネックで、真っ当な数学と認められないのではと思う今日この頃(^^ )

以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.031s