[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む45 (835レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む45 http://rio2016.5ch.net/test/read.cgi/math/1508931882/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
304: 現代数学の系譜 工学物理雑談 古典ガロア理論も読む [sage] 2017/11/03(金) 11:52:49.67 ID:lM51R0MT >>303 つづき で、関連部分引用する(^^ https://xorshammer.com/2008/08/23/set-theory-and-weather-prediction/ SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008 (抜粋) For some interesting comments on this puzzle, see Greg Muller’s blog post on it here http://cornellmath.wordpress.com/2007/09/13/the-axiom-of-choice-is-wrong/ (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1508931882/304
305: 現代数学の系譜 工学物理雑談 古典ガロア理論も読む [sage] 2017/11/03(金) 11:54:09.20 ID:lM51R0MT >>304 つづき 下記「選択公理は間違っている」に対し、Terence Taoのコメントが3つ https://cornellmath.wordpress.com/2007/09/13/the-axiom-of-choice-is-wrong/ The Axiom of Choice is Wrong By Greg Muller Everything Seminar blog at WordPress.com. September 13, 2007 (抜粋) Terence Tao Says: September 13, 2007 at 9:58 pm | Reply Terence Tao Says: September 19, 2007 at 1:45 am | Reply Terence Tao Says: September 20, 2007 at 12:42 pm | Reply (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1508931882/305
471: 現代数学の系譜 工学物理雑談 古典ガロア理論も読む [sage] 2017/11/06(月) 00:04:32.15 ID:1Au30FRy >>470 つづき で、むしろ時枝記事に近いのは、君が>>295(>>304)で紹介した下記の方が、時枝に近いだろう ここでは、任意の関数f(x)の任意の貴方の選ぶ1点(”You pick an x ∈ R”)を、” whatever f Bob picked, you will win the game with probability 1!”、”it’s arbitrary: it doesn’t have to be continuous or anything”の条件で当てられるとあるよ N⊂Rだから、”You pick an n ∈ N”とすれば、時枝記事の場合を含むことになろう で、時枝記事のように、どこの箱が当たるか分らず、また確率99/100に対して、これは自分で選んだxであり、”with probability 1!”だから、こちらの解法がよほど優れている おっちゃん(>>461)、どうだ?(^^ https://xorshammer.com/2008/08/23/set-theory-and-weather-prediction/ SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008 (抜粋) Here’s a puzzle: You and Bob are going to play a game which has the following steps. 1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything). 2)You pick an x ∈ R. 3)Bob reveals to you the table of values {(x0, f(x0))| x0 ≠ x } of his function on every input except the one you specified 4)You guess the value f(x) of Bob’s secret function on the number x that you picked in step 2. You win if you guess right, you lose if you guess wrong. What’s the best strategy you have? This initially seems completely hopeless: the values of f on inputs x0 ≠ x have nothing to do with the value of f on input x, so how could you do any better then just making a wild guess? In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ], the axiom of choice implies that you have a strategy such that, whatever f Bob picked, you will win the game with probability 1! つづく http://rio2016.5ch.net/test/read.cgi/math/1508931882/471
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s