(情報科学)技術的特異点と科学・技術等 1 (ナノテク) [転載禁止]©2ch.net (840レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
557
(3): 556 2016/11/15(火)17:25 ID:miLjs+zj(2/4) AAS
Page 14

階層 ry 効率 ry 各レベルで学習されたパターンが上位のレベルで組み合わせて再利用 ry
学習時間とメモリ消費を非常に節約する。
説明のため、視覚 ry 。階層構造の最下位レベルでは、
脳は縁13や角などの視覚のごく一部分に関する情報を格納する。
縁は ry 基本的な構成要素である。これらの下位レベルのパターンは中間レベルで ry
曲線や模様などのより複雑な構成要素に集約される。
円弧は耳の縁 ry 車のハンドル ry カップの取っ手 ry
。これらの中間レベルのパターンはさらに集約されて、頭、車、家などの
高レベルな物体の特徴を表す。
高レベルな物体 ry 、その構成要素を再度学習する必要がなくなる。

ry 単語を学習 ry 文字や文節、発音を再度学習する必要はない。

階層構造間で表現を共有 ry 、予期される行動の一般化にもなる。
ry 動物を見 ry 、口や歯を見 ry 食 ry 噛 ry 予測 ry
。階層構造により、 ry 新しい物体がその構成要素が持つ既に分かっている特徴を
引き継いでいることを知ることができる。
558
(1): 557 2016/11/15(火)17:26 ID:miLjs+zj(3/4) AAS
一つの HTM 階層構造はいくつの事柄を学習 ry ?
言い換えれば、階層構造にはいくつのレベルが必要 ry ?
各レベルに割り当てるメモリと、必要なレベル数の間にはトレードオフ ry
HTM は入力の統計及び割り当てられたリソースの量とから、
各レベルの最適な表現を自動的に学習 ry
多くのメモリを割り当 ry レベルはより大きくより複雑な表現を構成し、
従って必要となる階層構造のレベルはより少 ry
少ないメモリ ry 小さく単純な表現を構成し、 ry レベルはより多 ry

ここからは、視覚の推論14のような難しい問題について述べる
(推論はパターン認識と似 ry )。しかし多くの価値ある問題は視覚より単純で、
一つの HTM リージョンでも十分 ry
Web ry どこをクリックするか予測 ry
。この問題は、一連の Web クリックのデータをHTM ネットワークに流し込 ry
。この問題では空間的階層構造はわずか ry 。解決策は主に時間的な統計 ry
一般的なユーザのパターンを認識することで、 ry どこをクリックするかを予測 ry

13 edge。へり・ふち。
14 inference
561
(3): 557 2016/11/17(木)21:05 ID:G0S5ouMa(1) AAS
Page 15

まとめると、階層構造は学習時間 ry メモリ消費を節約し、一般化 ry
しかしながら、単純な予測問題の多くは一つの HTM リージョンでも解決 ry

リージョン
階層構造に連結されたリージョン15の表現は、生物学から ry
新皮質は厚さ 2mm ry 。生物学では主にそれらが互いにどのように接続 ry
基づいて、新皮質を異なる領域ないしリージョンに区分けする。
あるリージョンはセンサから直接入力 ry
、他のリージョンは他のいくつかのリージョンを経由 ry
。階層構造を決 ry ージョ ry ョンへの接続関係 ry

新皮質のすべてのリージョンの細部は似 ry
サイズや階層構造の中のどこに位置 ry 違 ry 、その他は似ている。
厚さ 2mm の新皮質リージョンを縦にスライスしたなら、6 つの層 ry 。
5 つはセルの層で、1 つはセルではない層である(少しの例外 ry )。
新皮質リージョンの各層はカラム状に数多くの相互接続されたセルがある。

HTM リージョンもまた、高度に相互接続されたセルがカラム状に配列された皮 ry
新皮質の第 3 層はニューロンの主要なフィード・フォワード層である。
HTM リー ry のセルはおおまかに言えば新皮質のリー ry 3 層にあるニューロンと等価 ry

図 1-3 HTM リージョンの区画。 ry 。セルは二次元のカラム状 ry
図では、1 カラム当たり 4 つのセル ry 小さな区画 ry 。各カラムは入力

15 region。体の部位、局部など ry
619
(4): 618 2017/01/10(火)06:41 ID:xuLIsBiQ(1/2) AAS
Page 30

。セルが ry セルとの横方向の接続によってアクティブ ry 「予測状態」と呼ぶ(図 2-3)。

3) 以前の入力の文脈に基づいて、現在の入力からの予測をするリージョンの ry
予測はステップ 2)で作成した、すべての以前の入力からの文脈を含む表現に基づ ry

リージョンが予測をするときは、将来のフィード・フォワード入力によって
アクティブになると考えられるすべてのセルをアクティブ(予測状態)にする。
リージョンの表現は疎であるので、同時に複数の予測がなされ得る。
例えばカラムのうちの 2%が入力によってアクティブになるとすると、
カラムの 20%が予測状態のセルとなることで10 個の異なる予測がなされ得る。
ry 40% ry 20 個 ry 。各カラムが 4 個のセルからなり、一度に一つだけがアクティブ
になるとすれば、セル全体の 10%が予測状態 ry

今後、疎分散表現の章が追加されれば、異なる予測が混じり合っても、
リージョンは特定の入力が予測されたのかそうでないのかを高い確信 ry

リージョンはどうやって予測 ry ? 入力パターンが時間と共に変化するとき、
カラムとセルの異なる組み合わせが順次アクティブになる。
あるセルがアクティブになると、周囲のセルのうちすぐ直前にアクティブだったセルの
部分集合への接続を形成する。これらの接続は、そのアプリ ry で必要とされる学習速度
に応じて早く形成されたりゆっくり ry 調整できる。
その後、すべてのセルはこれらの接続を見て、
どのセルが同時にアクティブになるかを探さなくてはならない。
もし接続がアクティブになったら、
セルはそれ自身が間もなくアクティブになることを予測することができ、予測状態に入る。
よってある組み合わせのセルがフィード・フォワード入力によってアクティブになると、
ひき続いて起こると考えられる他の組み合わせのセルが予測状態になる。 ry
歌を聞いていて次の音を予測 ry 瞬間と同様 ry

>>541 >>555 >>557-558 >>561-564 >>570 >>578-579
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.028s