[過去ログ] 分からない問題はここに書いてね427 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
300(3): 2017/06/07(水)04:34 ID:cWrhBr4o(1/4) AAS
>>297
当選確率1/36のくじを引いて、n回目にはじめて当たりを引く確率は
(1/36)*(35/36)^(n-1)
従ってn回までに当選する確率は
S=Σ[k=1,n](1/36)*(35/36)^(k-1) = 1-(35/36)^n で与えられる
n=40 で S=0.6759
n=41 で S=0.6849
省6
312(1): 2017/06/07(水)20:35 ID:cWrhBr4o(2/4) AAS
>>309
当選が出るまでの回数をグラフにしたいのですよね。
横軸が、1,2,3,...,35,36,37,...で、縦軸がその回数ではじめて当選が出るような確率の。
実際にグラフにしてみてください。
正規分布で近似できるような形に見えますか?
また、「正規分布?±1σ内は」等とよく書かれていますが、標準偏差がどれくらいかおわかりですか?
319(1): 2017/06/07(水)22:12 ID:cWrhBr4o(3/4) AAS
>>313
ご質問の内容が、「当選が出るまでの回数」についてだとして回答しています。
最初に当たる確率は1/36、
2回目に(はじめて)あたる確率は、1回目に外れ、2回目に当たる確率なので、(35/36)*(1/36)
...
n回目に(はじめて)あたる確率は、(n-1)回目まで常に外れ、n回目に当たる確率なので、(35/36)^(n-1)*(1/36)
というのが、>>300に書いた内容です。
省8
320(1): 2017/06/07(水)22:13 ID:cWrhBr4o(4/4) AAS
正規分布が登場するのは、例えば、36万回ルーレットをやったとき、当たりの回数は何回か?
というような問題の時です。この分布は本来は二項分布です。しかし、回数が多くなると形状が
正規分布に似てくるため、それで近似しようという場合に現れます。
平均は1万回、標準偏差は√(360000*(1/36)*(35/36))=98.6なので、ラフに標準分布の性質を利用すると
68.2%の確率で、9901回から10099回当たりが出ると言えるというような流れです。
しかし本来は、二項分布。9901回から10099回あたりが出る確率は
Σ[k=9901,10099]C[360000,k](1/36)^k*(35/36)^(360000-k)
省5
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s