[過去ログ] 【統計分析】機械学習・データマイニング26 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
226(3): (ワッチョイ cb10-vzjJ [153.131.102.129]) 2019/10/13(日)20:04 ID:Fxu1r5BT0(8/8) AAS
>>225
線型結合して関数を通して
また線型結合して関数を通して
の繰り返しでなぜ高次元になるの?
関数によって非線形になるなら判るけど
227: (アウアウウー Sac9-B2ag [106.154.130.6]) 2019/10/13(日)20:33 ID:llG9wcVha(4/5) AAS
>>226
非線形な活性化関数噛ませるでしょ普通
自然に高次元になるんじゃなくてそうなる様にしてるんだよ、ニューロン数は自由に決められるから
232(1): (ワッチョイ 653c-b92j [118.240.95.156]) 2019/10/13(日)21:45 ID:kaSZg9r20(9/11) AAS
>>226
ちょうどいいので>>220で示したXORを例に説明しよう
入力が2次元である(x1, x2)を拡張して3次元の(x1, x2, x3)にしようと思う
つまり
(0, 0, a) → 0
(0, 1, b) → 1
(1, 0, c) → 1
(1, 1, d) → 0
が出来て(a, b, c, d) = (0, 1, 1, 0)を設定できれば、平面z=0.5で2つの領域に分離できる
すなわちx3をx1, x2から作れれば良いので
省7
233: (ワッチョイ 653c-b92j [118.240.95.156]) 2019/10/13(日)21:46 ID:kaSZg9r20(10/11) AAS
>>226
ちょうどいいので>>220で示したXORを例に説明しよう
入力が2次元である(x1, x2)を拡張して3次元の(x1, x2, x3)にしようと思う
つまり
(0, 0, a) → 0
(0, 1, b) → 1
(1, 0, c) → 1
(1, 1, d) → 0
が出来て(a, b, c, d) = (0, 1, 1, 0)を設定できれば、平面z=0.5で2つの領域に分離できる
すなわちx3をx1, x2から作れれば良いので
省7
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.213s*