[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
26
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)20:06 ID:lDxwqd7y(16/16) AAS
”<公開処刑 続く>
(『 ZF上で実数は どこまで定義可能なのか?』に向けて と
  (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”]

『 ZF上で実数は どこまで定義可能なのか?』の前に
 Zornの補題 をやります ;p)

まず、ここから
(参考)>>14より 再録
alg-d.com/math/ac/wo_z.html
alg-d 壱大整域
トップ > 数学 > 選択公理 > 整列可能定理とZornの補題
省13
932
(2): 02/15(土)01:04 ID:tNB6oeTf(1/13) AAS
>>26
(引用開始)
(3(Zornの補題) ⇒ 1(選択公理))
{X_λ}_{λ∈Λ}を非空集合の族とする.
A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ }
としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である.
即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ.
もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である.
(引用終了)

選択関数はAの元なんだから、Aがwell-definedなら選択関数の存在は自明だけどその証明が無いのでは?
934
(1): 02/15(土)03:03 ID:tNB6oeTf(2/13) AAS
>>26
(引用開始)
(3(Zornの補題) ⇒ 1(選択公理))
{X_λ}_{λ∈Λ}を非空集合の族とする.
A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ }
としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である.
即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ.
もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である.
(引用終了)

この証明がまかり通るなら、
省4
945
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/15(土)09:35 ID:XknlDm4+(2/10) AAS
>>932
(引用開始)
>>26
(引用開始)
(3(Zornの補題) ⇒ 1(選択公理))
{X_λ}_{λ∈Λ}を非空集合の族とする.
A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ }
としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である.
即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ.
もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である.
省39
955: 02/15(土)10:18 ID:tNB6oeTf(3/13) AAS
>>945
>見比べてみな
君は見比べもせず何も疑問に思わず>>26でコピペしたと? 何のために? 自分が何も考えられない馬鹿であることを全世界に示すためかい?
965
(3): 02/15(土)12:09 ID:tNB6oeTf(7/13) AAS
>>26の証明って、極大元が存在してそれは選択関数って言ってるんだけど、それは選択関数が極大元となるようにAを定義したからそうなのであって、そこに必然性は何もない。
極大元であろうがなかろうが、選択関数を元として持つ集合を持ち出した時点で証明したい選択関数の存在を前提としてしまっている。これでは証明になっていない。
しょぼいとか言いがかり付けてるどこぞの輩はそんなことも分からないのだろうね。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.921s*