[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
830
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)09:59 ID:mxQOAQvq(1/13) AAS
>>825-826
>上の方は偏差値の話なんかしない

ID:LVsRI63z は、御大か
巡回ご苦労様です

まったくです
偏差値なんて、高校で終り
大学から上は、無関係
まして、社会人になったら、関係ない

下記、いま話題の 日本製鉄 会長 橋本英二氏は、熊本県立人吉高等学校[5]、一橋大学商学部卒業[6]
前任の 進藤 孝生(しんどう こうせい、1949年9月14日 - )氏も、一橋大学経済学部卒業(総代)
省25
833
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)10:35 ID:mxQOAQvq(2/13) AAS
>>820
>逆行列を求めるより固有値を求めるほうがはるかに大変だ
>ということくらいは覚えておいたほうがいい

視野が狭いな
行列の固有値の本質が分かってない!
下記を百回音読してねw ;p)
(なお、ハイゼンベルグ行列力学は、無限次元)

(参考)
hiroyukikojima.ハテナブログ.com/entry/2023/05/05/185544 (URLが通らないので検索請う)
hiroyukikojima’s blog
省18
834: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)10:36 ID:mxQOAQvq(3/13) AAS
つづき

ikuro-kotaro.サクラ.ne.jp/index.htm (URLが通らないので検索請う)
Ikuro's Home Page
ikuro-kotaro.サクラ.ne.jp/koramu24.htm (URLが通らないので検索請う)
■2024年のコラム(閑話休題)
ikuro-kotaro.サクラ.ne.jp/koramu2/30360_a9.htm (URLが通らないので検索請う)
62.素数の並び方に規則性はあるのか?(その6) (24/01/03)
【4】余白
 ヒルベルトは,リーマンのゼータ関数ζ(s)の零点がランダム・エルミート行列の固有値のように分布していると推測しました.後になって,これと同種の行列はその固有値が核子のエネルギーレベルに対応している原子核物理学の研究によく出てくることがわかりました.このエネルギーレベルの差として得られる分布が「ウィグナー分布」と呼ばれるものです.
 1925年,ハイゼンベルグが行列力学を,シュレディンガーが波動力学を提唱しました.ハイゼンベルグとボルンが行列力学を発見したとき,同じ固有値をもつ微分方程式を探すべきだと,ヒルベルトは彼らに語ったと伝えられています.しかし,彼らはそれに従いませんでした.そのために波動方程式を発見し損なったのですが,結局,その栄誉はシュレジンガーに与えられることになったのです.
省3
837
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)11:10 ID:mxQOAQvq(4/13) AAS
>>831-832
> 高校どこ? 名も無い公立?
>な、全然違うだろ?
>東京大学2024年 大学合格者 高校別ランキング
>外部リンク:univ-online.com

意味わからんw ;p)
おサルさん>>7-10

私立w大 数学科入学という
ならば、おそらく東大を受けて 不合格なんだろうね
その くやしさ 怨念が にじみ出ているとしか思えない
省23
849
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)12:35 ID:mxQOAQvq(5/13) AAS
戻るよ
 >>792
>行列式の定義で、多重線形性を使わず、
>置換の符号だけを使ったライブニッツの式
>をいきなり提示するのは、気持ち悪い
>気持ち悪い、というのは
>「こんなものどうやって思いついたか見当もつかん」
>という意味

アホなやつ
線形代数の道具立ての中で、最初に行列式が生まれた
省21
850: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)12:36 ID:mxQOAQvq(6/13) AAS
つづき

ja.wikipedia.org/wiki/%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E8%A7%A3%E6%9E%90
ベクトル解析
歴史
現代の学校教育では古典力学の導入からベクトルを用いた物理教育が行われ、数学でも幾何ベクトル・線型代数学・ベクトル解析といったベクトルの概念が普通に教えられている。しかし古典力学の登場と同時にベクトルも誕生したのではなく、物理法則などを表記するために19世紀に生まれ[1]、20世紀になり高次元ベクトル場にまで一般化された。

ベクトルが誕生するまでは直交座標系を用いた解析幾何学やウィリアム・ローワン・ハミルトンが考案した四元数を用いた記法が主流であり、力学・電磁気学の教育・研究でも解析幾何学的な多変数微積分学を用いた力学や四元数表記の電磁気学が普通であった[1]。余談だが、同じようにベクトルを扱う数学理論である線型代数も登場時期はほぼ同じであり、こちらは完成が遅れたため教育に本格的に導入されるのは20世紀後半、数学教育の現代化が言われ出した頃である。20世紀前半は教えられている物理数学が現代とは違っていたのであり、ベクトルは数学ではなく物理学の授業で導入され、行列式が先に教えられていたし[2]、行列を用いて量子力学を定式化したヴェルナー・ハイゼンベルクも線型代数を習っていなかった。日本でも明治初期の物理教育では、四元数に基づく電磁気学が教えられていたことは有名である。

ベクトルを初めて教育に導入したのはウィラード・ギブスとされ、1880年代のイェール大学の講義で記号こそ現代とは違うものの、外積・内積やベクトル解析の概念などが当時使われていたが、イギリスの四元数の著書もある物理学者ピーター・ガスリー・テイトの評判も大変不評であったという[1]。今日用いられている記号や専門用語の大半は1901年に出版されたギブスとエドウィン・ウィルソン(英語版)の共著『ベクトル解析』によって確立された。

しかし、ギブス以降の物理学の教育ではベクトルは四元数を推進していたハミルトンやテイトのいたイギリスにおいて寧ろ盛んに用いられるようになり、物理学における常識的な概念となった[1]。(イギリスのオリヴァー・ヘヴィサイドの存在が影響していると考えられる。)しかしながら20世紀に入ってからはむしろスピン角運動量などの概念も四元数に非常に類似しており、ハミルトンには先見性があったのではないかとされる[1]。
(引用終り)
以上
854
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)14:23 ID:mxQOAQvq(7/13) AAS
戻るよ
 >>817
> 零因子は無駄に話を広げすぎ
> 行列式ですら広げすぎなんだから

話は逆
あなたの視点は、低い・狭いw ;p)

いまのカリキュラムの線形代数とは、いろんな分野のエッセンスを抽象化したもので
下記の 謎の数学者 氏のいうように、ある程度で 先に進めて
また 線形代数を学んだ方が良いのです

 >>833の固有値の話も 同様です
省37
855: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)14:23 ID:mxQOAQvq(8/13) AAS
つづき

3:45
一文一文をですね完璧に理解して 次に進ん
3:50
でそれを完璧に理解しようとしてさらに次
3:52
に進むみたいなそういう形そういう読み方
3:54
をしているとあの絶対にですね数学書と
3:57
省32
856: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)14:24 ID:mxQOAQvq(9/13) AAS
つづき

9:07
プロポジションですよね命題とかですね
9:09
レンマとかそういうのはですねこの内容を
9:11
理解してとりあえず証明になる部分ははしょる
9:15
多少不明なですね無視して進むとかですね
9:17
省36
857: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)14:24 ID:mxQOAQvq(10/13) AAS
つづき

動画リンク[YouTube]
数学科あるある。大学院時代に本を大量に買い込む。
謎の数学者
2022/09/21
文字起こし
2:40
数学の本をですねもうただ闇雲にですね
2:43
買い込むという買い揃えるというこういう
省60
865
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)15:19 ID:mxQOAQvq(11/13) AAS
>>854 補足
>固有値が 「求めるのが大変」とか、そういうレベルで考えていることが、すでに落ちコボレさんでしょ? ;p)

固有値、固有ベクトル には、重要な役割があります
「求めるのが大変」とか、そういうレベルで考えていることが、すでにヘン w (^^

ああ、連立方程式を解くことだけしか
考えてないのかな?

(参考)
外部リンク:dora.bk.tsukuba.ac.jp
武内修@筑波大
固有値と固有ベクトル
省25
871
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)16:44 ID:mxQOAQvq(12/13) AAS
>>861-863
そうそう

1)それで、線形代数に限って話をすると
 線形代数が使われる 隣接分野が 沢山あるわけで
 その 隣接分野を学ぶと MM(数学成熟度)が上がって、線形代数の見え方が変わる
2)隣接分野を沢山学ぶと、どんどん MM(数学成熟度)が上がって、見え方が変わる
 例えば、下記 『線形代数と関数解析学—無限次元の考え方』とか
3)なので、その人それぞれの 見え方 考えでいいと思う
 もう一つは、いろんな切り口で考える。関連分野との切り口でね

正方行列だの正則行列だの 重箱の隅みたいなところを、必死に”ツッツク”落ちコボレさん
省16
872
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/13(木)16:59 ID:mxQOAQvq(13/13) AAS
>>870
>「正方行列の群」は何度読んでも馬鹿発言だなあとしみじみ思うけど

ふっ まだ言ってら〜 おサルさんw >>7-10

正方行列の群
 ↓
正方行列の(成す)群

とでも補えば
なんということもないw
群の定義に当てはめて、自然に逆元の存在と、単位元e が含まれる

いま、簡便に 行列の成分を 実数R or 複素数Cに限る
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s