[‰ß‹ŽÛ¸Þ] ƒKƒƒA‘æˆê˜_•¶‚Ææ”ƒCƒfƒAƒ‹‘¼ŠÖ˜AŽ‘—¿ƒXƒŒ12 (1002Ú½)
㉺‘OŽŸ1-V

‚±‚̽گÄނ͉ߋŽÛ¸Þ‘qŒÉ‚ÉŠi”[‚³‚ê‚Ä‚¢‚Ü‚·¡
ŽŸ½ÚŒŸõ —ðí¨ŽŸ½Ú žxí¨ŽŸ½Ú ‰ß‹ŽÛ¸ÞÒÆ­°
510
(3): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 01/22(…)16:07 ID:XJPGzntw(4/4) AAS
>>508
(ˆø—pŠJŽn)
‚¶‚áAf‚ð•\‚Éo‚µ‚È‚æ
A,A∖f(A),(A∖f(A))∖f(A∖f(A)),c
«
f(A),f(A∖f(A)),f((A∖f(A))∖f(A∖f(A))),c
’è‹`ˆæ‚ÌW‡‘°‚ð{A,A∖f(A),(A∖f(A))∖f(A∖f(A)),c}‚ɧŒÀ‚µ‚½‚¢‚炵‚¢‚¯‚Ç
‚»‚ê’†‚Ìf‚ð‘S•”Á‚³‚È‚¢‚ÆAzŠÂ˜_–@‚ŃAƒEƒg‚¾‚©‚ç
(ˆø—pI‚è)

‚Ó‚Á‚ÓA‚Ù‚Á‚Ù‚— G‚j

(ÄŒf)>>504‚æ‚è
en.wikipedia.org/wiki/Well-ordering_theorem
Well-ordering theorem
Proof from axiom of choice
The well-ordering theorem follows from the axiom of choice as follows.[9]
Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A.@’j–
For every ordinal ƒ¿, define an element aƒ¿ that is in A by setting
aƒ¿= f(A∖{aƒÌ∣ƒÌ<ƒ¿})
if this complement A∖{aƒÌ∣ƒÌ<ƒ¿} is nonempty, or leave aƒ¿ undefined if it is.
That is, aƒ¿ is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated).
Then the order < on A defined by aƒ¿<aƒÀ if and only if ƒ¿<ƒÀ (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{ƒ¿∣aƒ¿ is defined}.
Notes
9O Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7.
’j–
That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.
(ˆø—pI‚è)

‚³‚ÄA‚±‚Ì en.wikipedia Well-ordering theorem ‚Ì
Proof from axiom of choice by 9O Jech, Thomas (2002). Set Theory ‚Å
‚±‚±‚Ì‹LÚ hFor every ordinal ƒ¿, define an element aƒ¿ that is in A by setting
aƒ¿= f(A∖{aƒÌ∣ƒÌ<ƒ¿})
if this complement A∖{aƒÌ∣ƒÌ<ƒ¿} is nonempty, or leave aƒ¿ undefined if it is.h
‚ªAzŠÂ˜_–@‚¾‚ÆH ‹C‚ÍŠm‚©‚©H‚—

haƒ¿= f(A∖{aƒÌ∣ƒÌ<ƒ¿})h‚É‚¨‚¢‚Ä
–¾‚ç‚©‚É f ‘I‘ðŠÖ” ‚Å
’è‹`ˆæ‚ÌW‡‘° A∖{aƒÌ∣ƒÌ<ƒ¿} ‚±‚ꂪAŠÖ”‚Ì“ü—Í‚Å
aƒ¿ ‚ªAŠÖ” f‚Ìo—͂Ša ¸A ‚Å
aƒ¿ ‚Í a‚ª‡˜”ƒ¿‚Å“Y‚¦Žš•t‚¯‚Å‚«‚½‚±‚Æ‚ð•\‚·
‡˜‚ð hdefined by aƒ¿<aƒÀ if and only if ƒ¿<ƒÀh‚Æ‚·‚ê‚Î
a‚ÍA®—ñ‚Å‚«‚½‚±‚ƂɂȂé
i‚±‚± aƒ¿<a'ƒÀ ‚Æ‚Å‚à‚µ‚Ä‚¨‚­•û‚ª‚¢‚¢‚©‚à‚Ë G‚j

‚ÅAzŠÂ˜_–@‚¾‚ÆH
‚¨‚ê‚ÉŒ¾‚킸‚ÉAJech, Thomas ‚É‚¨Žèކ‘‚¢‚Ä‚Ë
•ÔŽ–‚ª—ˆ‚½‚çA‚±‚±‚ɃAƒbƒv‚µ‚Ä‚­‚ê‚—‚— G‚j
΂¦‚é ‚¨ƒTƒ‹‚³‚ñ‚æ>>7-10 ‚—‚—‚— G‚j
㉺‘OŽŸ1-VŠÖŽÊ”——õÝžx—ð
‚ ‚Æ 492 Ú½‚ ‚è‚Ü‚·
½Úî•ñ ÔÚ½’Šo ‰æ‘œÚ½’Šo —ð‚Ì–¢“Ç½Ú AA»ÑȲÙ

‚Ê‚±‚ÌŽè ‚Ê‚±TOP 0.018s