[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
100
(4): 2024/03/29(金)16:49 ID:HPlwW15h(2/25) AAS
>>94
何も変更してませんが
君の妄想ですか?

任意のXについてと言ってんだろ、Xはちゃんと存在する
お前は頭チンパンジーなの?
102
(3): 2024/03/29(金)17:01 ID:hoppQMOQ(20/41) AAS
>>100
1,...,6の値を一様に取る確率変数X:{0,1}→{1,...,6}を定義せよ
103
(2): 2024/03/29(金)17:07 ID:hoppQMOQ(21/41) AAS
>>100
>任意のXについてと言ってんだろ
それはおまえが勝手に言ってんだろ?

>Ωが小さいとき1,...,6の値を一様に取る確率変数は存在しないからP(X=1)=P(X∈{1})=P^X({1})=1/6なる式はナンセンスと言っている
のどこにも任意なんて書かれていない
おまえは日本語が読めないチンパンジーか?
147: 2024/03/29(金)22:12 ID:HPlwW15h(25/25) AAS
最初はこっちが勝手に言ってんだろとか言ってたのに、突然Xの存在を仮定し始める脳みそチンパンジー

103 132人目の素数さん 2024/03/29(金) 17:07:41.92 ID:hoppQMOQ
>>100
>任意のXについてと言ってんだろ
それはおまえが勝手に言ってんだろ?

>Ωが小さいとき1,...,6の値を一様に取る確率変数は存在しないからP(X=1)=P(X∈{1})=P^X({1})=1/6なる式はナンセンスと言っている
のどこにも任意なんて書かれていない
おまえは日本語が読めないチンパンジーか?

122 132人目の素数さん sage 2024/03/29(金) 17:25:03.98 ID:HPlwW15h
>>118
省7
980
(4): 2024/06/05(水)17:10 ID:GTWVkqvF(4/4) AAS
>>977
>>尻尾同値類を使う確率99/100が、きちんと測度論の裏付けのある事象かは要証明
>裏付けはある
>100個中99個だから確率99/100

1)だから、選択公理で代表を選んで、確率99/100を導いた
 条件つき確率としての確率99/100は認める
 しかし”選択公理を使う”ところは、測度論の保証がない
2)つまり、フルパワー選択公理を使うところは、測度論的には非可測もあり可測もある
 さて”選択公理を使”って、条件つき確率としての確率99/100を導いた
 その前提条件が、無限列の尻尾同値類で、無限個の項で一致する代表を使っているのならば
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.028s