[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
979: 2024/06/05(水)16:58 ID:beqeI1U3(1/3) AAS
>>976
>フルパワー選択公理は決して、
>集合の可測性を保証しないどころか、
>しばしば非可測集合を構成することが知られている
関係ないな
有限集合が測度0となるように
箱の全体集合を構成すればいい
Nではダメだが[0,1)ならよい
>「無限個の項で一致する」と宣うが、項1つの一致確率をpとすると
>無限個の項で一致する事象の確率は p^∞=0 であると自白していることになる
省8
981(1): 2024/06/05(水)17:19 ID:beqeI1U3(2/3) AAS
>>980
>条件つき確率としての確率99/100は認める
>条件つき確率としての確率99/100を導いた前提条件が、
>無限列の尻尾同値類で、無限個の項で一致する代表を使っているのならば
無限列R^Nの尻尾同値類の代表は、必ず無限個の項で一致するが
有限個、端的にいえば、1個しか一致しない代表を選ぶことは、絶対にできない
したがってその確率は0ではなく1である
出題列を固定するという意味での「条件つき確率」といってるのかとおもったが
そこは全然想定してなかったんだね ちゃんと考えてる?
985(1): 2024/06/05(水)21:29 ID:beqeI1U3(3/3) AAS
>>984
出題される100列を固定した場合
君のいう測度論は全く無用になるけど
>繰り返すが、1個の一致確率がpで 無限個の項で一致する代表を選ぶ確率はp^n=0です
繰り返すが、有限個の箱を除いた他の無限個の箱の中身がわかれば
選択公理によりその列と有限個の箱を除いて一致する代表が選べる
必ず選べるのだから確率は1
選択公理は確率論と相容れないのかい?
そんな主張は君以外から聞いたことないが?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s