[過去ログ] 分からない問題はここに書いてね 470 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
229: 2022/01/17(月)16:49 ID:DX6Gpz57(5/11) AAS
>>228

我ながら、いい解答ですね。
230
(2): 2022/01/17(月)17:35 ID:DX6Gpz57(6/11) AAS
ところで、この問題の次の問題が以下の問題です:

G を群とする。

i を整数とする。

(a * b)^i = a^i * b^i
(a * b)^{i+1} = a^{i+1} * b^{i+1}

がすべての a, b ∈ G に対して成り立つとする。
省1
231
(1): 2022/01/17(月)17:38 ID:DX6Gpz57(7/11) AAS
(a * b)^0 = a^0 * b^0
(a * b)^1 = a^1 * b^1

は任意の群で成り立つ。

群の中には非可換群が存在する。
232: 2022/01/17(月)17:38 ID:DX6Gpz57(8/11) AAS
もし、

>>230

の問題が試験で出題された場合、

>>231

この解答でOKですか?
233: 2022/01/17(月)17:44 ID:Z2aplBry(1/4) AAS
あいかわらずアホだなぁ
234: 2022/01/17(月)17:49 ID:DX6Gpz57(9/11) AAS
>>230

の問題は別に任意の i, i + 1 に対して成り立つことを仮定していません。

ある i, i + 1 に対して仮定が成り立つが、 G は非可換でありえるということを示せば十分なはずです。
235
(1): 2022/01/17(月)17:52 ID:Z2aplBry(2/4) AAS
だからそういう当たり前の束縛をキチンと書けないからアホなんだよ
>>226はエスパーしてやったがそういう当たり前の束縛をキチンと記述できないのがアホの証なんだよ
236
(1): 2022/01/17(月)17:54 ID:DX6Gpz57(10/11) AAS
>>225

この2つの問題はある教科書に載っている問題です。
237: 2022/01/17(月)17:57 ID:Z2aplBry(3/4) AAS
>>236
教科書に載ってる文章だろうがなんだろうが>>235を読んで「ああ、そうだ、その通り」って思えないからさらにアホなんだよパープー
238: 2022/01/17(月)18:10 ID:DX6Gpz57(11/11) AAS
この教科書の著者は不注意な人ですね。
239: 2022/01/17(月)18:12 ID:tJvN9Hqo(2/2) AAS
おまえが言うなw
240: 2022/01/17(月)18:19 ID:Z2aplBry(4/4) AAS
先人に対してなんの畏敬の念も持てないクソ
241: 2022/01/17(月)19:31 ID:FR3Fj4GO(1) AAS
吉祥寺より西の音大を卒業したピアノレッスンプロとかならすべての時代で比較しても最高峰のピアノの弾き手気分丸出しで高ビーにご指導なさりますかもしれませんね。
242: 2022/01/18(火)11:57 ID:TfGNEfH/(1/2) AAS
a^2+b^2=c^2を満たす正整数の組(a,b,c)全体からなる集合をSとする。
(d-e)^2+e^2=f^2を満たす正整数の組(d,e,f)全体からなる集合をTとする。
このときS∩Tについて述べた以下の?から?のうちで正しいものを選び、その理由を述べよ。

?空集合である
?空集合でない有限集合である
?無限集合である
243
(3): 2022/01/18(火)13:35 ID:TfGNEfH/(2/2) AAS
△ABCにおいて、BD:DC=1:2に内分する点D、CE:EA=1:2に内分する点E、AF:FB=1:2に内分する点Fをとる。
ADとBEの交点をP、BEとCFの交点をQ、CFとADの交点をRとする。以下の比を求めよ。
(PQ+QR+RP)/(AB+BC+CA)
244: 2022/01/18(火)19:35 ID:WJtrAWRi(1/6) AAS
以下のような、 G とその上の2項演算の例をあげてください。

G を空でない集合である。
G に結合法則を満たす2項演算が定義されているとする。
この2項演算に関して、 G には右単位元が存在するとする。
この2項演算に関して、 G には G の任意の元に対して、その左逆元が存在するとする。
この2項演算に関して、 G は群ではない。
245: 2022/01/18(火)19:36 ID:WJtrAWRi(2/6) AAS
訂正します:

以下のような、 G とその上の2項演算の例をあげてください。

G を空でない集合である。
G の上の2項演算は結合法則を満たす。
この2項演算に関して、 G には右単位元が存在する。
この2項演算に関して、 G には G の任意の元に対して、その左逆元が存在する。
この2項演算に関して、 G は群ではない。
246: 2022/01/18(火)19:36 ID:WJtrAWRi(3/6) AAS
訂正します:

訂正します:

以下のような、 G とその上の2項演算の例をあげてください。

G は空でない集合である。
G の上の2項演算は結合法則を満たす。
この2項演算に関して、 G には右単位元が存在する。
この2項演算に関して、 G には G の任意の元に対して、その左逆元が存在する。
この2項演算に関して、 G は群ではない。
247
(1): 2022/01/18(火)19:37 ID:WJtrAWRi(4/6) AAS
訂正します:

以下のような、 G とその上の2項演算の例をあげてください。

G は空でない集合である。
G の上の2項演算は結合法則を満たす。
この2項演算に関して、 G には右単位元が存在する。
この2項演算に関して、 G には G の任意の元に対して、その左逆元が存在する。
この2項演算に関して、 G は群ではない。
248: 2022/01/18(火)20:15 ID:WJtrAWRi(5/6) AAS
あ、わかりました。

G = {e, a}

e * e = e
e * a = e
a * e = a
a * a = a

と G とその上の2項演算を定義すると G は
>>247
の条件をすべて満たします。
1-
あと 754 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.013s