[過去ログ] Interーuniversal geometryとABC予想(応用スレ)51 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
403(1): 2021/02/13(土)10:48 ID:wXktx3pj(7/18) AAS
>>401
追加
外部リンク:ja.wikipedia.org
低次元トポロジー
目次
1 歴史
2 二次元
2.1 曲面の分類
2.2 タイヒミューラー空間
2.3 一意化定理
歴史
1960年代に始まった多くの位相幾何学の発展は、位相幾何学が低次元で重要であることを示した。1961年のスティーヴン・スメイルによる高次元でのポアンカレ予想の解決は、3次元と 4次元が最も難しい問題であると思わせるに充分であった。実際、3次元や 4次元では、新しい方法が要求され、一方、高次元での自由度は手術理論(英語版)を計算機的な方法で(低次元へ)還元することができることを意味した。後日、1970年代にウィリアム・サーストンにより定式化された幾何化予想では、低次元では幾何学とトポロジーが密接に関係することを示唆するフレームワークが提供され、サーストンのハーケン多様体についての幾何化予想の証明は、以前は関連の薄かった数学分野からくる多様体のツールが用られた。1980年代初期のヴォーン・ジョーンズによるジョーンズ多項式の発見は、結び目理論に新しい方向性をもたらしたのみならず、低次元トポロジーと数理物理学の間のミステリアスな関係性を呼び起こした。2002年のグレゴリー・ペレルマンは、リチャード・S・ハミルトンのリッチフローという幾何解析(英語版)分野のアイデアを使い、3次元ポアンカレ予想の証明を言明した。
すべてのこれらの前進は、残りの他の数学の分野へより良い影響をもたらした。
タイヒミューラー空間
詳細は「タイヒミューラー空間(英語版) 」を参照
数学において、(実)位相空間 X のタイヒミューラー空間 TX は、恒等写像と同位(英語版)な同相写像の作用を除いて X 上の複素構造をパラメータ付ける空間である。TX 上の各点は、「印」をつけたリーマン面の同型類とみなすことができる。ただし、「印」とは X から自分自身への同相写像の同位類である。タイヒミューラー空間は、(リーマン)モジュライ空間の普遍被覆軌道体(英語版)である。
タイヒミューラー空間は、標準的な複素多様体の構造と豊かな自然計量を持っている。タイヒミューラー空間の台となる位相空間は、フリッケ(Fricke)により研究され、その上のタイヒミュラー計量は Oswald Teichmuller (1940) で導入された[1]。
上下前次1-新書関写板覧索設栞歴
あと 599 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s