[過去ログ] 2つの封筒問題 Part.3 [無断転載禁止]©2ch.net (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
126(4): 2017/03/19(日)17:58 ID:K+oTc9z5(4/11) AAS
>>112
「一方の中身は他方の2倍」という要請を満たす金額の対
{x,2x} の出現確率を p(x) と置く。
この時点では、とりあえず命名するだけで、
p(x) の中身についてはまだ何も言わない。
{x,2x} から最初の封筒を取るとき
x の方を取る確率を q と置く。
q=1/2 と仮定することは、妥当だと思う。←[1]
二つの封筒からランダムに一つ取るとは、そういうことだから。
この仮定の下では、>>102に書いたように、
省10
128(1): 2017/03/19(日)18:13 ID:Bgy8qqEV(11/17) AAS
>>126
特に反論することもないのですが。
> この仮定は、唐突だと思う。
> そう仮定したい気持ちも、仮定してよい理由も全く思い当たらない。
我々からすれば仮定は確かに唐突ですが、そう仮定してしまう人間心理に
多少思いを馳せないと、この問題を楽しめないかもしれませんよ?w
なんかサイコロっぽいものが与えられた!
→とりあえず離散一様分布を仮定しておこう
と考える人がいないわけでもないだろうなー、というね。
サイコロっぽいものが与えられたときに、1つの目に確率1、
省3
220: 2017/03/21(火)21:41 ID:3nl2QQKP(1) AAS
>>217
違う。
p(5000)=p(10000)を話題にするのなら、その式が
登場したレスくらい目を通せよ。>>126だ。
そのレスで、p(x)は「2つの封筒があり、
一方の封筒に入っている金額はもう一方の封筒に
入っている金額の2倍である。」という条件下に
2つの封筒の中身が{x,2x}である確率と定義した。
「10000を見たときに」の確率ではない。
このp(x)を用いて、10000を見たときに
省12
436(2): 2017/04/04(火)14:20 ID:D6+98tjJ(4/5) AAS
>>434
そこが誤解です。
可能なすべての設定の平均を取るためには、
可能なすべての設定の分布を設定しなくてはなりません。
母集団は何であるか、測度は何であるか。
>プレイヤーが選んだ封筒が高額である可能世界と
>低額である可能世界は、測度が等しい
となるような母集団と測度を設定してみてください。
母集団が無限なので、
理由不十分の原理で同意し合える一様分布は存在しません。
省15
440(2): 2017/04/04(火)19:56 ID:D6+98tjJ(5/5) AAS
計算過程を書いていませんでしたかね。
>>126と同様に、「一方の中身は他方の2倍」という要請を満たす金額の対
{N,2N} の出現確率を p(N) と置きます。
開けた封筒が10000で、かつ、もうひとつの封筒が5000である確率は、
ふたつの封筒が{5000,10000}で、かつ、そのうち10000のほうを開けた確率なので、
p(5000)*(1/2)と書けます。
開けた封筒が10000で、かつ、もうひとつの封筒が20000である確率のほうは、
ふたつの封筒が{10000,20000}で、かつ、そのうち10000のほうを開けた確率なので、
p(10000)*(1/2)です。
ここで、選んだ封筒の中身がNである確率と2Nである確率がともに1/2であること
省17
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s