くだらねぇ問題はここへ書け (882レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

531: 2020/09/10(木)16:37 ID:7NHP8bMP(1/3) AAS
〔問題〕
平面上の△ABCの辺BC上に点Dをとり、
 AB^2 + AC^2 = 2AD^2 + BD^2 + CD^2,
をみたすようにします。
このときDは辺BCの中点Mに限るでしょうか。

数セミ増刊「数学の問題」第2集, 日本評論社 (1978)
●116改
532: 2020/09/10(木)16:39 ID:7NHP8bMP(2/3) AAS
Aから辺BCに下した垂線の足をHとおくと
 AB^2 = AH^2 + BH^2,
 AC^2 = AH^2 + CH^2,
辺々たせば与式となる。

点Dは辺BCの中点Mと垂足Hに限るでしょうか。
533: 2020/09/10(木)16:40 ID:7NHP8bMP(3/3) AAS
A(a,h) B(b,0) C(c,0) D(x,0) H(a,0)
とおけば
AH = h,
AB^2 = hh + BH^2 = hh + (b-a)^2,
AC^2 = hh + CH^2 = hh + (c-a)^2,
AD^2 = hh + DH^2 = hh + (x-a)^2,
BD = |x-b|,
CD = |x-c|,

AB^2 - AD^2 - BD^2 = -2(x-a)(x-b),
AC^2 - AD^2 - CD^2 = -2(x-a)(x-c),
省4
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.434s*